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About this Tutorial 

An Algorithm is a sequence of steps to solve a problem. Design and Analysis of Algorithm 

is very important for designing algorithm to solve different types of problems in the branch 

of computer science and information technology.  

This tutorial introduces the fundamental concepts of Designing Strategies, Complexity 

analysis of Algorithms, followed by problems on Graph Theory and Sorting methods. This 

tutorial also includes the basic concepts on Complexity theory. 

 

Audience 

This tutorial has been designed for students pursuing a degree in any computer science, 

engineering, and/or information technology related fields. It attempts to help students to 

grasp the essential concepts involved in algorithm design. 

 

Prerequisites 

The readers should have basic knowledge of programming and mathematics. The readers 

should know data structure very well. Moreover, it is preferred if the readers have basic 

understanding of Formal Language and Automata Theory. 

 

Copyright & Disclaimer 

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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An algorithm is a set of steps of operations to solve a problem performing calculation, data 

processing, and automated reasoning tasks. An algorithm is an efficient method that can be 

expressed within finite amount of time and space.  

An algorithm is the best way to represent the solution of a particular problem in a very simple 

and efficient way. If we have an algorithm for a specific problem, then we can implement it 

in any programming language, meaning that the algorithm is independent from any 

programming languages. 

Algorithm Design 

The important aspects of algorithm design include creating an efficient algorithm to solve a 

problem in an efficient way using minimum time and space.  

To solve a problem, different approaches can be followed. Some of them can be efficient with 

respect to time consumption, whereas other approaches may be memory efficient. However, 

one has to keep in mind that both time consumption and memory usage cannot be optimized 

simultaneously. If we require an algorithm to run in lesser time, we have to invest in more 

memory and if we require an algorithm to run with lesser memory, we need to have more 

time.   

Problem Development Steps 

The following steps are involved in solving computational problems. 

 Problem definition 

 Development of a model 

 Specification of an Algorithm 

 Designing an Algorithm 

 Checking the correctness of an Algorithm 

 Analysis of an Algorithm 

 Implementation of an Algorithm 

 Program testing 

 Documentation  

Characteristics of Algorithms 

The main characteristics of algorithms are as follows: 

1. DAA ─ Introduction 
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 Algorithms must have a unique name 

 Algorithms should have explicitly defined set of inputs and outputs  

 Algorithms are well-ordered with unambiguous operations 

 Algorithms halt in a finite amount of time. Algorithms should not run for infinity, i.e., 
an algorithm must end at some point 

Pseudocode 

Pseudocode gives a high-level description of an algorithm without the ambiguity associated 

with plain text but also without the need to know the syntax of a particular programming 

language. 

The running time can be estimated in a more general manner by using Pseudocode to 

represent the algorithm as a set of fundamental operations which can then be counted. 

Difference between Algorithm and Pseudocode 

An algorithm is a formal definition with some specific characteristics that describes a process, 

which could be executed by a Turing-complete computer machine to perform a specific 

task. Generally, the word "algorithm" can be used to describe any high level task in computer 

science. 

On the other hand, pseudocode is an informal and (often rudimentary) human readable 

description of an algorithm leaving many granular details of it. Writing a pseudocode has no 

restriction of styles and its only objective is to describe the high level steps of algorithm in a 

much realistic manner in natural language.   

For example, following is an algorithm for Insertion Sort. 

Algorithm: Insertion-Sort 

Input: A list L of integers of length n  

Output: A sorted list L1 containing those integers present in L 

Step 1: Keep a sorted list L1 which starts off empty  

Step 2: Perform Step 3 for each element in the original list L  

Step 3: Insert it into the correct position in the sorted list L1.  

Step 4: Return the sorted list 

Step 5: Stop 

Here is a pseudocode which describes how the high level abstract process mentioned above 

in the algorithm Insertion-Sort could be described in a more realistic way. 

for i ← 1 to length(A) 

    x ← A[i] 

    j ← i 
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    while j > 0 and A[j-1] > x 

        A[j] ← A[j-1] 

        j ← j - 1 

    A[j] ← x 

In this tutorial, algorithms will be presented in the form of pseudocode, that is similar in many 

respects to C, C++, Java, Python, and other programming languages. 
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In theoretical analysis of algorithms, it is common to estimate their complexity in the 

asymptotic sense, i.e., to estimate the complexity function for arbitrarily large input. The term 

"analysis of algorithms" was coined by Donald Knuth.  

Algorithm analysis is an important part of computational complexity theory, which provides 

theoretical estimation for the required resources of an algorithm to solve a 

specific computational problem. Most algorithms are designed to work with inputs of arbitrary 

length. Analysis of algorithms is the determination of the amount of time and space resources 

required to execute it.  

Usually, the efficiency or running time of an algorithm is stated as a function relating the input 

length to the number of steps, known as time complexity, or volume of memory, known as 

space complexity. 

The Need for Analysis 

In this chapter, we will discuss the need for analysis of algorithms and how to choose a better 

algorithm for a particular problem as one computational problem can be solved by different 

algorithms.  

By considering an algorithm for a specific problem, we can begin to develop pattern 

recognition so that similar types of problems can be solved by the help of this algorithm. 

Algorithms are often quite different from one another, though the objective of these 

algorithms are the same. For example, we know that a set of numbers can be sorted using 

different algorithms. Number of comparisons performed by one algorithm may vary with 

others for the same input. Hence, time complexity of those algorithms may differ. At the same 

time, we need to calculate the memory space required by each algorithm.  

Analysis of algorithm is the process of analyzing the problem-solving capability of the 

algorithm in terms of the time and size required (the size of memory for storage while 

implementation). However, the main concern of analysis of algorithms is the required time or 

performance. Generally, we perform the following types of analysis: 

 Worst-case: The maximum number of steps taken on any instance of size a. 

 

 Best-case: The minimum number of steps taken on any instance of size a. 

 

 Average case: An average number of steps taken on any instance of size a. 

 

 Amortized: A sequence of operations applied to the input of size a averaged over 

time. 

 

2. DAA ─ Analysis of Algorithms 

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity
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To solve a problem, we need to consider time as well as space complexity as the program 

may run on a system where memory is limited but adequate space is available or may be 

vice-versa. In this context, if we compare bubble sort and merge sort. Bubble sort does 

not require additional memory, but merge sort requires additional space. Though time 

complexity of bubble sort is higher compared to merge sort, we may need to apply bubble 

sort if the program needs to run in an environment, where memory is very limited. 
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To measure resource consumption of an algorithm, different strategies are used as discussed 

in this chapter. 

Asymptotic Analysis 

The asymptotic behavior of a function 𝒇(𝒏) refers to the growth of 𝒇(𝒏) as n gets large.  

We typically ignore small values of n, since we are usually interested in estimating how slow 

the program will be on large inputs.  

A good rule of thumb is that the slower the asymptotic growth rate, the better the algorithm. 

Though it’s not always true. 

For example, a linear algorithm 𝒇(𝒏) = 𝒅 ∗ 𝒏 + 𝒌 is always asymptotically better than a 

quadratic one, 𝒇(𝒏) = 𝒄. 𝒏𝟐 + 𝒒.  

Solving Recurrence Equations 

A recurrence is an equation or inequality that describes a function in terms of its value on 

smaller inputs. Recurrences are generally used in divide-and-conquer paradigm.  

Let us consider 𝑻(𝒏) to be the running time on a problem of size n.  

If the problem size is small enough, say 𝒏 < 𝒄 where c is a constant, the straightforward 

solution takes constant time, which is written as Ɵ(𝟏). If the division of the problem yields a 

number of sub-problems with size 
𝒏

𝒃
. 

To solve the problem, the required time is 𝒂. 𝑻(𝒏/𝒃). If we consider the time required for 

division is 𝑫(𝒏) and the time required for combining the results of sub-problems is 𝑪(𝒏), the 

recurrence relation can be represented as: 

𝑻(𝒏) =  {
𝜽(𝟏)     𝒊𝒇 𝒏 ≤ 𝒄

𝒂𝑻 (
𝒏

𝒃
) + 𝑫(𝒏) + 𝑪(𝒏)       𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

A recurrence relation can be solved using the following methods: 

 Substitution Method ─ In this method, we guess a bound and using mathematical 

induction we prove that our assumption was correct. 

 

 Recursion Tree Method ─ In this method, a recurrence tree is formed where each 

node represents the cost.  

 

3. DAA ─ Methodology of Analysis 
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 Master’s Theorem ─ This is another important technique to find the complexity of a 

recurrence relation. 

 

 

Amortized Analysis 

Amortized analysis is generally used for certain algorithms where a sequence of similar 

operations are performed.  

 Amortized analysis provides a bound on the actual cost of the entire sequence, instead 

of bounding the cost of sequence of operations separately. 

 

 Amortized analysis differs from average-case analysis; probability is not involved in 

amortized analysis. Amortized analysis guarantees the average performance of each 

operation in the worst case. 

It is not just a tool for analysis, it’s a way of thinking about the design, since designing and 

analysis are closely related. 

Aggregate Method 

The aggregate method gives a global view of a problem. In this method, if n operations takes 

worst-case time 𝑻(𝒏) in total. Then the amortized cost of each operation is 𝑻(𝒏)/𝒏. Though 

different operations may take different time, in this method varying cost is neglected. 

Accounting Method 

In this method, different charges are assigned to different operations according to their actual 

cost. If the amortized cost of an operation exceeds its actual cost, the difference is assigned 

to the object as credit. This credit helps to pay for later operations for which the amortized 

cost less than actual cost.  

If the actual cost and the amortized cost of ith operation are 𝒄𝒊 and 𝒄�̂�, then 

∑ 𝒄�̂�

𝒏

𝒊=𝟏

≥  ∑ 𝒄𝒊

𝒏

𝒊=𝟏

 

Potential Method 

This method represents the prepaid work as potential energy, instead of considering prepaid 

work as credit. This energy can be released to pay for future operations.  

If we perform 𝒏 operations starting with an initial data structure 𝑫𝟎. Let us consider, 𝒄𝒊 as the 

actual cost and 𝑫𝑖 as data structure of ith operation. The potential function ф maps to a real 

number  ф(𝑫𝒊), the associated potential of 𝑫𝒊. The amortized cost 𝒄�̂� can be defined by  

𝒄�̂� =  𝒄𝒊 +  ф(𝑫𝒊) − ф(𝑫𝒊−𝟏) 
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Hence, the total amortized cost is  

∑ 𝒄�̂�

𝒏

𝒊=𝟏

=  ∑(𝒄𝒊 +  ф(𝑫𝒊) − ф(𝑫𝒊−𝟏))

𝒏

𝒊=𝟏

=  ∑ 𝒄𝒊 +  ф(𝑫𝒏) − ф(𝑫𝟎)

𝒏

𝒊=𝟏

 

Dynamic Table 

If the allocated space for the table is not enough, we must copy the table into larger size 

table. Similarly, if large number of members are erased from the table, it is a good idea to 

reallocate the table with a smaller size.  

Using amortized analysis, we can show that the amortized cost of insertion and deletion is 

constant and unused space in a dynamic table never exceeds a constant fraction of the total 

space. 

In the next chapter of this tutorial, we will discuss Asymptotic Notations in brief.  
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In designing of Algorithm, complexity analysis of an algorithm is an essential aspect. Mainly, 

algorithmic complexity is concerned about its performance, how fast or slow it works.  

The complexity of an algorithm describes the efficiency of the algorithm in terms of the 

amount of the memory required to process the data and the processing time. 

Complexity of an algorithm is analyzed in two perspectives: Time and Space. 

Time Complexity 

It’s a function describing the amount of time required to run an algorithm in terms of the size 

of the input. "Time" can mean the number of memory accesses performed, the number of 

comparisons between integers, the number of times some inner loop is executed, or some 

other natural unit related to the amount of real time the algorithm will take.  

Space Complexity 

It’s a function describing the amount of memory an algorithm takes in terms of the size of 

input to the algorithm. We often speak of "extra" memory needed, not counting the memory 

needed to store the input itself. Again, we use natural (but fixed-length) units to measure 

this.  

Space complexity is sometimes ignored because the space used is minimal and/or obvious, 

however sometimes it becomes as important an issue as time. 

Asymptotic Notations 

Execution time of an algorithm depends on the instruction set, processor speed, disk I/O 

speed, etc. Hence, we estimate the efficiency of an algorithm asymptotically. 

Time function of an algorithm is represented by 𝐓(𝐧), where n is the input size. 

Different types of asymptotic notations are used to represent the complexity of an algorithm. 

Following asymptotic notations are used to calculate the running time complexity of an 

algorithm. 

 O: Big Oh 

 Ω: Big omega 

 Ɵ: Big theta 

 o: Little Oh 

 ω: Little omega 

4. DAA ─ Asymptotic Notations & Apriori Analysis 
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O: Asymptotic Upper Bound 

‘O’ (Big Oh) is the most commonly used notation. A function 𝐟(𝐧) can be represented is the 

order of 𝒈(𝒏) that is 𝑶(𝒈(𝒏)), if there exists a value of positive integer n as n0 and a positive 

constant c such that:  

𝒇(𝒏)  ≤ 𝒄. 𝒈(𝒏)  for 𝒏 > 𝒏𝟎 in all case. 

Hence, function 𝒈(𝒏) is an upper bound for function 𝒇(𝒏), as 𝒈(𝒏) grows faster than 𝒇(𝒏). 

Example  

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) =  𝒏𝟑, 

𝒇(𝒏) ≤ 𝟓. 𝒈(𝒏) for all the values of 𝒏 > 𝟐. 

Hence, the complexity of 𝒇(𝒏) can be represented as 𝑶(𝒈(𝒏)), i.e. 𝑶(𝒏𝟑). 

Ω: Asymptotic Lower Bound 

We say that 𝒇(𝒏) =  𝛀(𝐠(𝒏)) when there exists constant c that 𝒇(𝒏) ≥ 𝒄. 𝒈(𝒏) for all sufficiently 

large value of n. Here n is a positive integer. It means function g is a lower bound for function 

f; after a certain value of n, f will never go below g. 

Example  

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) =  𝒏𝟑, 𝒇(𝒏) ≥ 𝟒. 𝒈(𝒏) for all the values of 𝒏 > 𝟎. 

Hence, the complexity of 𝒇(𝒏) can be represented as 𝛀(𝒈(𝒏)), i.e. 𝛀(𝒏𝟑). 

Ɵ: Asymptotic Tight Bound 

We say that 𝑓(𝑛) =  Ɵ(g(𝑛)) when there exist constants c1 and c2 that 𝑐1. 𝑔(𝑛) ≤ 𝑓(𝑛) ≤  𝑐2. 𝑔(𝑛) 

for all sufficiently large value of n. Here n is a positive integer.  

This means function g is a tight bound for function f. 

Example  

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) =  𝒏𝟑, 𝟒. 𝒈(𝒏) ≤ 𝒇(𝒏) ≤ 𝟓. 𝒈(𝒏) for all the large values of n. 
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Hence, the complexity of 𝒇(𝒏) can be represented as Ɵ(𝐠(𝒏)), i.e. Ɵ(𝒏𝟑). 

 

O - Notation 

The asymptotic upper bound provided by O-notation may or may not be asymptotically tight. 

The bound 𝟐. 𝒏𝟐 = 𝑶(𝒏𝟐) is asymptotically tight, but the bound 𝟐. 𝒏 = 𝑶(𝒏𝟐) is not. 

We use o-notation to denote an upper bound that is not asymptotically tight.  

We formally define 𝒐(𝒈(𝒏)) (little-oh of g of n) as the set 𝒇(𝒏) = 𝒐(𝒈(𝒏)) for any positive 

constant 𝒄 > 𝟎 and there exists a value 𝒏𝟎 > 𝟎, such that 𝟎 ≤ 𝒇(𝒏) ≤ 𝒄. 𝒈(𝒏). 

Intuitively, in the o-notation, the function 𝒇(𝒏) becomes insignificant relative to 𝒈(𝒏) as n 

approaches infinity; that is, 

𝐥𝐢𝐦
𝒏→∞

(
𝒇(𝒏)

𝒈(𝒏)
) = 𝟎  

Example  

Let us consider the same function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) = 𝒏𝟒, 

𝐥𝐢𝐦
𝒏→∞

(
𝟒 𝐧^𝟑 +  𝟏𝟎 𝐧^𝟐 +  𝟓 𝐧 +  𝟏

𝒏^𝟒
) =  𝟎  

 

Hence, the complexity of 𝒇(𝒏) can be represented as 𝒐(𝒈(𝒏)), i.e. 𝒐(𝒏𝟒). 

ω – Notation 

We use ω-notation to denote a lower bound that is not asymptotically tight. Formally, 

however, we define ⍵(𝒈(𝒏)) (little-omega of g of n) as the set 𝒇(𝒏) = ⍵(𝒈(𝒏)) for any positive 

constant 𝒄 > 𝟎 and there exists a value 𝒏𝟎 > 𝟎, such that 𝟎 ≤ 𝒄. 𝒈(𝒏) < 𝒇(𝒏). 

For example, 
𝒏𝟐

𝟐
= ⍵(𝒏), but 

𝒏𝟐

𝟐
≠ ⍵(𝒏𝟐). The relation 𝒇(𝒏) =  ⍵(𝒈(𝒏)) implies that the following 

limit exists 

𝐥𝐢𝐦
𝒏→∞

(
𝒇(𝒏)

𝒈(𝒏)
) = ∞ 

That is, 𝒇(𝒏) becomes arbitrarily large relative to 𝒈(𝒏) as n approaches infinity. 

Example 

Let us consider same function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 
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Considering 𝒈(𝒏) =  𝒏𝟐, 

𝐥𝐢𝐦
𝒏→∞

(
𝟒 𝐧𝟑 +  𝟏𝟎 𝐧𝟐 +  𝟓 𝐧 +  𝟏

𝒏𝟐
) = ∞ 

Hence, the complexity of 𝒇(𝒏) can be represented as 𝒐(𝒈(𝒏)), i.e. ⍵(𝒏𝟐). 
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