
i

i

About the Tutorial

Guava is an open source, Java-based library developed by Google. It facilitates best coding

practices and helps reduce coding errors. It provides utility methods for collections,

caching, primitives support, concurrency, common annotations, string processing, I/O,

and validations.

This tutorial adopts a simple and intuitive way to describe the basic-to-advanced concepts

of Guava and how to use its APIs.

Audience

This tutorial will be useful for most Java developers, starting from beginners to experts.

After completing this tutorial, we are confident you will find it easy to use Guava in your

programs.

Prerequisites

Prior exposure to Java programming is the only requirement to make the most of this

tutorial.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Guava

ii

Table of Contents

About the Tutorial ·· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ··· i

Table of Contents ·· ii

1. GUAVA ─ OVERVIEW ··· 1

2. GUAVA ─ ENVIRONMENT SETUP ··· 3

Set CLASSPATH Variable ·· 5

3. GUAVA ─ OPTIONAL CLASS ·· 6

4. GUAVA ─ PRECONDITIONS CLASS ·· 9

5. GUAVA ─ ORDERING CLASS ··· 13

6. GUAVA ─ OBJECTS CLASS ··· 19

7. GUAVA ─ RANGE CLASS ··· 23

8. GUAVA ─ THROWABLES CLASS ·· 29

9. GUAVA ─ COLLECTIONS UTILITIES ·· 33

Multiset Interface ··· 33

Multimap Interface ··· 37

BiMap Interface ·· 42

Table Interface ·· 44

10. GUAVA ─ CACHING UTILITIES ··· 48

11. GUAVA ─ STRING UTILITIES ·· 53

Joiner Class·· 53

Guava

iii

Splitter Class ··· 56

CaseFormat Class ·· 64

12. GUAVA ─ PRIMITIVE UTILITIES ··· 67

Bytes Class ·· 67

Shorts Class ··· 70

Ints Class ··· 74

Longs Class ·· 78

Floats Class ·· 81

Doubles Class ·· 85

Chars Class ·· 89

Booleans Class ··· 92

13. GUAVA ─ MATH UTILITIES ··· 97

IntMath Class ·· 97

LongMath Class ··· 100

BigIntegerMath Class ·· 104

Guava

4

What is Guava?

Guava is an open source, Java-based library and contains many core libraries of Google, which

are being used in many of their projects. It facilitates best coding practices and helps reduce

coding errors. It provides utility methods for collections, caching, primitives support,

concurrency, common annotations, string processing, I/O, and validations.

Benefits of Guava

 Standardized – The Guava library is managed by Google.

 Efficient - It is a reliable, fast, and efficient extension to the Java standard library.

 Optimized – The library is highly optimized.

 Functional Programming - It adds functional processing capability to Java.

 Utilities - It provides many utility classes which are regularly required in programming

application development.

 Validation - It provides a standard failsafe validation mechanism.

 Best Practices – It emphasizes on best practices.

Consider the following code snippet.

public class GuavaTester {

 public static void main(String args[]){

 GuavaTester guavaTester = new GuavaTester();

 Integer a = null;

 Integer b = new Integer(10);

 System.out.println(guavaTester.sum(a,b));

 }

 public Integer sum(Integer a, Integer b){

 return a + b;

 }

}

Run the program to get the following result.

1. GUAVA ─ OVERVIEW

Guava

5

Exception in thread "main" java.lang.NullPointerException

 at GuavaTester.sum(GuavaTester.java:13)

 at GuavaTester.main(GuavaTester.java:9)

Following are the problems with the code.

 sum() is not taking care of any of the parameters to be passed as null.

 caller function is also not worried about passing a null to the sum() method accidently.

 When the program runs, NullPointerException occurs.

In order to avoid the above problems, null check is to be made in each and every place where

such problems are present.

Let's see the use of Optional, a Guava provided Utility class, to solve the above problems in

a standardized way.

import com.google.common.base.Optional;

public class GuavaTester {

 public static void main(String args[]){

 GuavaTester guavaTester = new GuavaTester();

 Integer invalidInput = null;

 Optional<Integer> a = Optional.of(invalidInput);

 Optional<Integer> b = Optional.of(new Integer(10));

 System.out.println(guavaTester.sum(a,b));

 }

 public Integer sum(Optional<Integer> a, Optional<Integer> b){

 return a.get() + b.get();

 }

}

Run the program to get the following result.

Exception in thread "main" java.lang.NullPointerException

 at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:210)

 at com.google.common.base.Optional.of(Optional.java:85)

 at GuavaTester.main(GuavaTester.java:8)

Guava

6

Let's understand the important concepts of the above program.

 Optional - A utility class, to make the code use the null properly.

 Optional.of - It returns the instance of Optional class to be used as a parameter. It

checks the value passed, not to be ‘null’.

 Optional.get - It gets the value of the input stored in the Optional class.

Using the Optional class, you can check whether the caller method is passing a proper

parameter or not.

Guava

7

Try it Option Online

We have setup a Java Programming environment online, so that you can compile and execute

all the available examples online at the same time when you are doing your theory work. This

gives you confidence in what you are reading and to check the result with different options.

Feel free to modify any example and execute it online.

Try following example using the Try it (http://compileonline.com/) option available at the top

right corner of the code boxes in our website:

public class MyFirstJavaProgram {

 public static void main(String []args) {

 System.out.println("Hello World");

 }

}

For most of the examples given in this tutorial, you will find a Try it option, provided with the

sole intention to make your learning more enjoyable.

Local Environment Setup

If you are still willing to set up your environment for Java programming language, then this

section guides you on how to download and set up Java on your machine. Please follow the

steps mentioned below to set up the environment.

Java SE is freely available from the link

http://www.oracle.com/technetwork/java/javase/downloads/index-jdk5-jsp-142662.html.

So you download a version based on your operating system.

Follow the instructions to download Java and run the .exe to install Java on your machine.

Once you have installed Java on your machine, you would need to set environment variables

to point to correct installation directories:

Setting up the Path for Windows 2000/XP

We are assuming that you have installed Java in c:\Program Files\java\jdk directory:

 Right-click on 'My Computer' and select 'Properties'.

2. GUAVA ─ ENVIRONMENT SETUP

Guava

8

 Click on the 'Environment variables' button under the 'Advanced' tab.

 Now, alter the 'Path' variable so that it also contains the path to the Java executable.

Example, if the path is currently set to 'C:\WINDOWS\SYSTEM32', then change your

path to read 'C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin'.

Setting up the Path for Windows 95/98/ME

We are assuming that you have installed Java in c:\Program Files\java\jdk directory:

 Edit the 'C:\autoexec.bat' file and add the following line at the end:

'SET PATH=%PATH%;C:\Program Files\java\jdk\bin'

Setting up the Path for Linux, UNIX, Solaris, FreeBSD

Environment variable PATH should be set to point to where the Java binaries have been

installed. Refer to your shell documentation if you have trouble doing this.

Example, if you use bash as your shell, then you would add the following line to the end of

your '.bashrc: export PATH=/path/to/java:$PATH'

Popular Java Editors

To write your Java programs, you need a text editor. There are many sophisticated IDEs

available in the market. But for now, you can consider one of the following:

 Notepad: On Windows machine you can use any simple text editor like Notepad

(Recommended for this tutorial), TextPad.

 Netbeans: It is a Java IDE that is open-source and free which can be downloaded

from http://www.netbeans.org/index.html.

 Eclipse: It is also a Java IDE developed by the eclipse open-source community and

can be downloaded from http://www.eclipse.org/.

Download Guava Archive

Download the latest version of Guava jar file from “guava-18.0.jar”. At the time of writing this

tutorial, we have downloaded guava-18.0.jar and copied it into C:\>Guava folder.

OS Archive name

Windows guava-18.0.jar

Linux guava-18.0.jar

Mac guava-18.0.jar

Guava

9

Set Guava Environment

Set the Guava_HOME environment variable to point to the base directory location where

Guava jar is stored on your machine. Assuming, we've extracted guava-18.0.jar in Guava

folder on various Operating Systems as follows:

OS Output

Windows Set the environment variable Guava_HOME to C:\Guava

Linux export Guava_HOME=/usr/local/Guava

Mac export Guava_HOME=/Library/Guava

Set CLASSPATH Variable

Set the CLASSPATH environment variable to point to the Guava jar location. Assuming, you

have stored guava-18.0.jar in Guava folder on various Operating Systems as follows.

OS Output

Windows Set the environment variable CLASSPATH to

%CLASSPATH%;%Guava_HOME%\guava-18.0.jar;.;

Linux export CLASSPATH=$CLASSPATH:$Guava_HOME/guava-18.0.jar:.

Mac export CLASSPATH=$CLASSPATH:$Guava_HOME/guava-18.0.jar:.

Guava

10

Optional is an immutable object used to contain a not-null object. Optional object is used to

represent null with absent value. This class has various utility methods to facilitate the code

to handle values as available or not available instead of checking null values.

Class Declaration

Following is the declaration for com.google.common.base.Optional<T> class:

@GwtCompatible(serializable=true)

public abstract class Optional<T>

 extends Object

 implements Serializable

Class Methods

S.N. Method & Description

1
static <T> Optional<T> absent()

Returns an Optional instance with no contained reference.

2

abstract Set<T> asSet()

Returns an immutable singleton Set whose only element is the contained instance

if it is present; an empty immutable Set otherwise.

3

abstract boolean equals(Object object)

Returns true if object is an Optional instance, and either the contained references

are equal to each other or both are absent.

4

static <T> Optional<T> fromNullable(T nullableReference)

If nullableReference is non-null, returns an Optional instance containing that

reference; otherwise returns absent().

5
abstract T get()

Returns the contained instance, which must be present.

3. GUAVA ─ OPTIONAL CLASS

Guava

11

6
abstract int hashCode()

Returns a hash code for this instance.

7
abstract boolean isPresent()

Returns true if this holder contains a (non-null) instance.

8
static <T> Optional<T> of(T reference)

Returns an Optional instance containing the given non-null reference.

9
abstract Optional<T> or(Optional<? extends T> secondChoice)

Returns this Optional if it has a value present; secondChoice otherwise.

10
abstract T or(Supplier<? extends T> supplier)

Returns the contained instance if it is present; supplier.get() otherwise.

11
abstract T or(T defaultValue)

Returns the contained instance if it is present; defaultValue otherwise.

12
abstract T orNull()

Returns the contained instance if it is present; null otherwise.

13

static <T> Iterable<T> presentInstances(Iterable<? extends Optional<?

extends T>> optionals)

Returns the value of each present instance from the supplied optionals, in order,

skipping over occurrences of absent().

14
abstract String toString()

Returns a string representation for this instance.

15

abstract <V> Optional<V> transform(Function<? super T,V> function)

If the instance is present, it is transformed with the given Function; otherwise,

absent() is returned.

Methods Inherited

This class inherits methods from the following class:

 java.lang.Object

Example of Optional Class

Create the following java program using any editor of your choice in say C:/> Guava.

Guava

12

GuavaTester.java

import com.google.common.base.Optional;

public class GuavaTester {

 public static void main(String args[]){

 GuavaTester guavaTester = new GuavaTester();

 Integer value1 = null;

 Integer value2 = new Integer(10);

 //Optional.fromNullable - allows passed parameter to be null.

 Optional<Integer> a = Optional.fromNullable(value1);

 //Optional.of - throws NullPointerException if passed parameter is null

 Optional<Integer> b = Optional.of(value2);

 System.out.println(guavaTester.sum(a,b));

 }

 public Integer sum(Optional<Integer> a, Optional<Integer> b){

 //Optional.isPresent - checks the value is present or not

 System.out.println("First parameter is present: " + a.isPresent());

 System.out.println("Second parameter is present: " + b.isPresent());

 //Optional.or - returns the value if present otherwise returns

 //the default value passed.

 Integer value1 = a.or(new Integer(0));

 //Optional.get - gets the value, value should be present

 Integer value2 = b.get();

 return value1 + value2;

 }

}

Guava

13

Verify the Result

Compile the class using javac compiler as follows:

C:\Guava>javac GuavaTester.java

Now run the GuavaTester to see the result.

C:\Guava>java GuavaTester

See the result.

First parameter is present: false

Second parameter is present: true

10

Guava

14

Preconditions provide static methods to check that a method or a constructor is invoked with

proper parameter or not. It checks the pre-conditions. Its methods throw

IllegalArgumentException on failure.

Class Declaration

Following is the declaration for com.google.common.base.Preconditions class:

@GwtCompatible

public final class Preconditions

 extends Object

Class Methods

S.N. Method & Description

1

static void checkArgument(boolean expression)

Ensures the truth of an expression involving one or more parameters to the

calling method.

2

static void checkArgument(boolean expression, Object errorMessage)

Ensures the truth of an expression involving one or more parameters to the

calling method.

3

static void checkArgument(boolean expression, String

errorMessageTemplate, Object. errorMessageArgs)

Ensures the truth of an expression involving one or more parameters to the

calling method.

4
static int checkElementIndex(int index, int size)

Ensures that index specifies a valid element in an array, list or a string of size.

5
static int checkElementIndex(int index, int size, String desc)

Ensures that index specifies a valid element in an array, list, or a string of size.

4. GUAVA ─ PRECONDITIONS CLASS

Guava

15

6

static <T> T checkNotNull(T reference)

Ensures that an object reference passed as a parameter to the calling method is

not null.

7

static <T> T checkNotNull(T reference, Object errorMessage)

Ensures that an object reference passed as a parameter to the calling method is

not null.

8

static <T> T checkNotNull(T reference, String errorMessageTemplate,

Object... errorMessageArgs)

Ensures that an object reference passed as a parameter to the calling method is

not null.

9
static int checkPositionIndex(int index, int size)

Ensures that index specifies a valid position in an array, list or a string of size.

10
static int checkPositionIndex(int index, int size, String desc)

Ensures that index specifies a valid position in an array, list or a string of size.

11

static void checkPositionIndexes(int start, int end, int size)

Ensures that start and end specify a valid positions in an array, list or a string of

size, and are in order.

12

static void checkState(boolean expression)

Ensures the truth of an expression involving the state of the calling instance, but

not involving any parameters to the calling method.

13

static void checkState(boolean expression, Object errorMessage)

Ensures the truth of an expression involving the state of the calling instance, but

not involving any parameters to the calling method.

14

static void checkState(boolean expression, String

errorMessageTemplate, Object... errorMessageArgs)

Ensures the truth of an expression involving the state of the calling instance, but

not involving any parameters to the calling method.

Methods Inherited

This class inherits methods from the following class:

 java.lang.Object

Example of Preconditions Class

Guava

16

Create the following java program using any editor of your choice in say C:/> Guava.

GuavaTester.java

import com.google.common.base.Preconditions;

public class GuavaTester {

 public static void main(String args[]){

 GuavaTester guavaTester = new GuavaTester();

 try {

 System.out.println(guavaTester.sqrt(-3.0));

 }catch(IllegalArgumentException e){

 System.out.println(e.getMessage());

 }

 try {

 System.out.println(guavaTester.sum(null,3));

 }catch(NullPointerException e){

 System.out.println(e.getMessage());

 }

 try {

 System.out.println(guavaTester.getValue(6));

 }catch(IndexOutOfBoundsException e){

 System.out.println(e.getMessage());

 }

 }

 public double sqrt(double input) throws IllegalArgumentException {

 Preconditions.checkArgument(input > 0.0,

 "Illegal Argument passed: Negative value %s.", input);

 return Math.sqrt(input);

 }

 public int sum(Integer a, Integer b){

 a = Preconditions.checkNotNull(a,

Guava

17

 "Illegal Argument passed: First parameter is Null.");

 b = Preconditions.checkNotNull(b,

 "Illegal Argument passed: Second parameter is Null.");

 return a+b;

 }

 public int getValue(int input){

 int[] data = {1,2,3,4,5};

 Preconditions.checkElementIndex(input,data.length,

 "Illegal Argument passed: Invalid index.");

 return 0;

 }

}

Verify the Result

Compile the class using javac compiler as follows:

C:\Guava>javac GuavaTester.java

Now run the GuavaTester to see the result.

C:\Guava>java GuavaTester

See the result.

Illegal Argument passed: Negative value -3.0.

Illegal Argument passed: First parameter is Null.

Illegal Argument passed: Invalid index. (6) must be less than size (5)

Guava

18

Ordering can be seen as an enriched comparator with enhanced chaining functionality,

multiple utility methods, multi-type sorting capability, etc.

Class Declaration

Following is the declaration for com.google.common.collect.Ordering<T> class:

@GwtCompatible

public abstract class Ordering<T>

 extends Object

 implements Comparator<T>

Class Methods

S.N. Method & Description

1

static Ordering<Object> allEqual()

Returns an ordering which treats all values as equal, indicating "no ordering."

Passing this ordering to any stable sort algorithm results in no change to the

order of elements.

2

static Ordering<Object> arbitrary()

Returns an arbitrary ordering over all objects, for which compare(a, b) == 0

implies a == b (identity equality).

3
int binarySearch(List<? extends T> sortedList, T key)

Searches sortedList for key using the binary search algorithm.

4
abstract int compare(T left, T right)

Compares its two arguments for order.

5

<U extends T> Ordering<U> compound(Comparator<? super U>

secondaryComparator)

Returns an ordering which first uses the ordering this, but which in the event of a

"tie", then delegates to secondaryComparator.

5. GUAVA ─ ORDERING CLASS

Guava

19

6

static <T> Ordering<T> compound(Iterable<? extends Comparator<?

super T>> comparators)

Returns an ordering which tries each given comparator in order until a non-zero

result is found, returning that result, and returning zero only if all comparators

return zero.

7

static <T> Ordering<T> explicit(List<T> valuesInOrder)

Returns an ordering that compares objects according to the order in which they

appear in the given list.

8

static <T> Ordering<T> explicit(T leastValue, T...

remainingValuesInOrder)

Returns an ordering that compares objects according to the order in which they

are given to this method.

9
static <T> Ordering<T> from(Comparator<T> comparator)

Returns an ordering based on an existing comparator instance.

10

<E extends T> List<E> greatestOf(Iterable<E> iterable, int k)

Returns the k greatest elements of the given iterable according to this ordering,

in order from greatest to least.

11

<E extends T> List<E> greatestOf(Iterator<E> iterator, int k)

Returns the k greatest elements from the given iterator according to this

ordering, in order from greatest to least.

12

<E extends T> ImmutableList<E> immutableSortedCopy(Iterable<E>

elements)

Returns an immutable list containing elements sorted by this ordering.

13

boolean isOrdered(Iterable<? extends T> iterable)

Returns true if each element in iterable after the first is greater than or equal to

the element that preceded it, according to this ordering.

14

boolean isStrictlyOrdered(Iterable<? extends T> iterable)

Returns true if each element in iterable after the first is strictly greater than the

element that preceded it, according to this ordering.

15

<E extends T> List<E> leastOf(Iterable<E> iterable, int k)

Returns the k least elements of the given iterable according to this ordering, in

order from least to greatest.

Guava

20

16 <E extends T> List<E> leastOf(Iterator<E> elements, int k)

Returns the k least elements from the given iterator according to this ordering, in

order from least to greatest.

17

<S extends T> Ordering<Iterable<S>> lexicographical()

Returns a new ordering which sorts iterables by comparing corresponding

elements pairwise until a nonzero result is found; imposes "dictionary order".

18
<E extends T> E max(E a, E b)

Returns the greater of the two values according to this ordering.

19
<E extends T> E max(E a, E b, E c, E... rest)

Returns the greatest of the specified values according to this ordering.

20
<E extends T> E max(Iterable<E> iterable)

Returns the greatest of the specified values according to this ordering.

21
<E extends T> E max(Iterator<E> iterator)

Returns the greatest of the specified values according to this ordering.

22
<E extends T> E min(E a, E b)

Returns the lesser of the two values according to this ordering.

23
<E extends T> E min(E a, E b, E c, E... rest)

Returns the least of the specified values according to this ordering.

24
<E extends T> E min(Iterable<E> iterable)

Returns the least of the specified values according to this ordering.

25
<E extends T> E min(Iterator<E> iterator)

Returns the least of the specified values according to this ordering.

26
static <C extends Comparable> Ordering<C> natural()

Returns a serializable ordering that uses the natural order of the values.

27

<S extends T> Ordering<S> nullsFirst()

Returns an ordering that treats null as less than all other values and uses this to

compare non-null values.

Guava

21

28

<S extends T> Ordering<S> nullsLast()

Returns an ordering that treats null as greater than all other values and uses this

ordering to compare non-null values.

29

<F> Ordering<F> onResultOf(Function<F,? extends T> function)

Returns a new ordering on F which orders elements by first applying a function to

them, then comparing those results using this.

30

<S extends T> Ordering<S> reverse()

Returns the reverse of this ordering; the Ordering equivalent to

Collections.reverseOrder(Comparator).

31

<E extends T> List<E> sortedCopy(Iterable<E> elements)

Returns a mutable list containing elements sorted by this ordering; use this only

when the resulting list may need further modification, or may contain null.

32

static Ordering<Object> usingToString()

Returns an ordering that compares objects by the natural ordering of their string

representations as returned by toString().

Methods Inherited

This class inherits methods from the following class:

 java.lang.Object

Example of Ordering Class

Create the following java program using any editor of your choice in say C:/> Guava.

GuavaTester.java

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

import com.google.common.collect.Ordering;

public class GuavaTester {

 public static void main(String args[]){

 List<Integer> numbers = new ArrayList<Integer>();

 numbers.add(new Integer(5));

Guava

22

 numbers.add(new Integer(2));

 numbers.add(new Integer(15));

 numbers.add(new Integer(51));

 numbers.add(new Integer(53));

 numbers.add(new Integer(35));

 numbers.add(new Integer(45));

 numbers.add(new Integer(32));

 numbers.add(new Integer(43));

 numbers.add(new Integer(16));

 Ordering ordering = Ordering.natural();

 System.out.println("Input List: ");

 System.out.println(numbers);

 Collections.sort(numbers,ordering);

 System.out.println("Sorted List: ");

 System.out.println(numbers);

 System.out.println("======================");

 System.out.println("List is sorted: " + ordering.isOrdered(numbers));

 System.out.println("Minimum: " + ordering.min(numbers));

 System.out.println("Maximum: " + ordering.max(numbers));

 Collections.sort(numbers,ordering.reverse());

 System.out.println("Reverse: " + numbers);

 numbers.add(null);

 System.out.println("Null added to Sorted List: ");

 System.out.println(numbers);

 Collections.sort(numbers,ordering.nullsFirst());

 System.out.println("Null first Sorted List: ");

 System.out.println(numbers);

 System.out.println("======================");

Guava

23

 List<String> names = new ArrayList<String>();

 names.add("Ram");

 names.add("Shyam");

 names.add("Mohan");

 names.add("Sohan");

 names.add("Ramesh");

 names.add("Suresh");

 names.add("Naresh");

 names.add("Mahesh");

 names.add(null);

 names.add("Vikas");

 names.add("Deepak");

 System.out.println("Another List: ");

 System.out.println(names);

 Collections.sort(names,ordering.nullsFirst().reverse());

 System.out.println("Null first then reverse sorted list: ");

 System.out.println(names);

 }

}

Verify the Result

Compile the class using javac compiler as follows:

C:\Guava>javac GuavaTester.java

Now run the GuavaTester to see the result.

C:\Guava>java GuavaTester

See the result.

Guava

24

Input List:

[5, 2, 15, 51, 53, 35, 45, 32, 43, 16]

Sorted List:

[2, 5, 15, 16, 32, 35, 43, 45, 51, 53]

======================

List is sorted: true

Minimum: 2

Maximum: 53

Reverse: [53, 51, 45, 43, 35, 32, 16, 15, 5, 2]

Null added to Sorted List:

[53, 51, 45, 43, 35, 32, 16, 15, 5, 2, null]

Null first Sorted List:

[null, 2, 5, 15, 16, 32, 35, 43, 45, 51, 53]

======================

Another List:

[Ram, Shyam, Mohan, Sohan, Ramesh, Suresh, Naresh, Mahesh, null, Vikas, Deepak]

Null first then reverse sorted list:

[Vikas, Suresh, Sohan, Shyam, Ramesh, Ram, Naresh, Mohan, Mahesh, Deepak, null]

Guava

25

Objects class provides helper functions applicable to all objects such as equals, hashCode,

etc.

Class Declaration

Following is the declaration for com.google.common.base.Objects class:

@GwtCompatible

public final class Objects

 extends Object

Class Methods

S.N. Method & Description

1
static boolean equal(Object a, Object b)

Determines whether two possibly-null objects are equal.

2

static <T> T firstNonNull(T first, T second)

Deprecated. Use MoreObjects.firstNonNull(T, T) instead. This method is scheduled

for removal in June 2016.

3
static int hashCode(Object... objects)

Generates a hash code for multiple values.

4

static Objects.ToStringHelper toStringHelper(Class<?> clazz)

Deprecated. Use MoreObjects.toStringHelper(Class) instead. This method is

scheduled for removal in June 2016.

5

static Objects.ToStringHelper toStringHelper(Object self)

Deprecated. Use MoreObjects.toStringHelper(Object) instead. This method is

scheduled for removal in June 2016.

6

static Objects.ToStringHelper toStringHelper(String className)

Deprecated. Use MoreObjects.toStringHelper(String) instead. This method is

scheduled for removal in June 2016.

6. GUAVA ─ OBJECTS CLASS

Guava

26

Methods Inherited

This class inherits methods from the following class:

 java.lang.Object

Example of Objects Class

Create the following java program using any editor of your choice in say C:/> Guava.

GuavaTester.java

import com.google.common.base.Objects;

public class GuavaTester {

 public static void main(String args[]){

 Student s1 = new Student("Mahesh", "Parashar", 1, "VI");

 Student s2 = new Student("Suresh", null, 3, null);

 System.out.println(s1.equals(s2));

 System.out.println(s1.hashCode());

 System.out.println(

 Objects.toStringHelper(s1)

 .add("Name",s1.getFirstName()+" " + s1.getLastName())

 .add("Class", s1.getClassName())

 .add("Roll No", s1.getRollNo())

 .toString());

 }

}

class Student {

 private String firstName;

 private String lastName;

 private int rollNo;

 private String className;

 public Student(String firstName, String lastName, int rollNo, String

Guava

27

 className){

 this.firstName = firstName;

 this.lastName = lastName;

 this.rollNo = rollNo;

 this.className = className;

 }

 @Override

 public boolean equals(Object object){

 if(!(object instanceof Student) || object == null){

 return false;

 }

 Student student = (Student)object;

 // no need to handle null here

 // Objects.equal("test", "test") == true

 // Objects.equal("test", null) == false

 // Objects.equal(null, "test") == false

 // Objects.equal(null, null) == true

 return Objects.equal(firstName, student.firstName) // first name can be null

 && Objects.equal(lastName, student.lastName) // last name can be null

 && Objects.equal(rollNo, student.rollNo)

 && Objects.equal(className, student.className);// class name can be null

 }

 @Override

 public int hashCode(){

 //no need to compute hashCode by self

 return Objects.hashCode(className,rollNo);

 }

 public String getFirstName() {

 return firstName;

 }

Guava

28

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public int getRollNo() {

Guava

29

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

