Selenium WebDriver
tutorialspoint

S I MPLY EASY LEARNINDLG

RV
-(ASGJQ{-'

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint

Selenium Webdriver

About the Tutorial

Selenium Webdriver is a robust tool for testing the front end of an application and to
perform tasks on the browser. Selenium tests can be created in multiple programming
languages like Python, Java, and so on. This tutorial shall provide you with a detailed
understanding on Selenium in Python language and its salient features.

Audience

This tutorial is designed for professionals working in software testing who want to
improve their knowledge on front end testing. The tutorial contains a good amount of
hands-example on all important topics in Selenium with Python.

Prerequisites

Before going through this tutorial, you should have knowledge on Python programming.
Also, understanding software testing is needed to start with this tutorial.

Copyright & Disclaimer

© Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point
(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or
republish any contents or a part of contents of this e-book in any manner without written
consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely
as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)
Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of
our website or its contents including this tutorial. If you discover any errors on our
website or in this tutorial, please notify us at contact@tutorialspoint.com

I&j Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

mailto:contact@tutorialspoint.com

Selenium Webdriver

Table of Contents

ADOUL the TULOTTAl c..eeiieieeieee ettt sb e bt e et et e b e b e e b e e reeresmnesanes i
YT e 1= o TP PP ST PR PSPPI i
e =T =T o UL =TT PP TP PO PPPPPTRTRN i
COPYFIBNE & DISCIAIME ...neeiiiiteie ettt b e et e st e et e st e e e bt e s be e e bt e sabeeebeesabeesnneesares i
TaBIE OF CONTENTS ittt e e st e st e st e et e e sab e e e bt e sabeesaneesabeesaneenn i
1. Selenium Webdriver = INtroduCtionccovieiiiereiiiiiiiiiieieeninesreen s assss e 1
2. Selenium Webdriver — INStallationccoeeiiiiieiiiinieiiiiiiiiiiieeiieeeer e ase e 2
3. Selenium Webdriver — Browser NaVigationceeesessesssssmssmssssssssssssssssssnnnns 7
4. Selenium Webdriver — Identify Single Element............eriiiiiiiicircccccrrrcssssssssssssss s sssssssssssssssssssssnssnsnns 8
2372 L« OO OO PSP PP PO PPTORRIPSRPRRRPIOt 8
2V V- 10 U= SO OPOPPPON 9
BY CIaSSINGIME ..cuetiiiiieiiiteetee sttt sttt sat e st e st e esab e e s at e e s bt e e sae e e s b b e e bt e e sh b e e eaee e sabe e bt e e sabeenbeeesnbeeenreesaneennns 11
BY TABNGMIE ...t e e s e e et e et a e et e et aae e e e s 12
BY LINK TOXE. e euteeittteeteesitt ettt ettt ettt s et e s et e st e e s ab e e s ae e e s a b e e s ae e e s bt e e bt e e sab e e e ae e e sab e e bt e e sabeenneeennbeebeeenaneenees 14
BY Partial LINK TOXL ...eeeuieeeieeitieeteest ettt sttt ettt et s bt e e it e s it e e bt e e sabe e se e e sabeebeeesaneennees 15
3T O R =1 1=T ot o SRR 17
234 =1 o PSSP 19
5. Selenium Webdriver — Identify Multiple EIementsccceeeeeeeeeeeeeeeeeeeeemeeeeeeeeeeeeeeeeeeeeeeeeeeeeessssssssmsnsnnes 25
2T o SRR 25
2V O L =1 o L= SRR 25
2 YA - T=4 0 T= 10 4 [T T TP PP P TP P PR PR PP PR OO URPRORPRPRPRPRPON 26
BY Partial LINK TEXL ...uveeeeetieeieiiieeeiiieeesitie e eetee e e sttt e e s tte e e staeeeesabeeeeenseeeesssaeaeesseeesansseessssaeasanssenesansnneesnseneens 28
5 T S I SN 29
2V V- T U= PP P PP O PSP P RO OO USPPRPTPTON 31
2T IR =] 1=t o U URT 32
23T (o - 1 o SRR 35

EIMPLYEAGSYLEARMNINIG

@j Mtutorialspoint

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Selenium Webdriver

Selenium Webdriver — Explicit and Implicit Wait........cccceeveiiiiiiiiiiiiiiiieeeeeeeeeeeeeeees 41
o3 Tq o] ot YAV 11 RN 41
[T g o T 1AV Y SRS 43
Selenium Webdriver — POP-UPS ...cciiiiiiiiiiiiiiiiiiiiiisisssssssssssssssssssssnnsssssssssssssssssssssssssssssssssssssssnns 45
Selenium Webdriver — Backward and Forward Navigation..........ccccceeevvueeeeiiiiiiinnneneenninnissnenneennnsssnnnee 47
Selenium Webdriver — COOKI@S.......ciiiiiiiiiiemeiiiiiiiiiiiiiiniinnsenree s asss s s s s s anas 49
Selenium Webdriver — EXCEPLIONScciiiiiiiiiiiiiiiiiiiiiiiiiisssnnns 51
Selenium Webdriver — ACtion Classccceeviveeeiiiiieeiiiiineiiinieeiiieteisssesssssesssssessssssesssssseessssssessenns 54
Selenium Webdriver — Create @ BasiC TESt.......cccvvirerriiiieeiiiiieeiiiniteiiiseeisseeesssssessssseesssssseessssssessenes 57
Selenium Webdriver — FOIMScoiceeiiiiiieiiiiiiiiiesisieesissee s sssssessssase s s ss e s s ssss e ssssass e sessasesssnns 59
Selenium Webdriver — Drag and Dropcccceeeeiiiiiiiiiiiiiiiiiiisesesssssessesssnns 61
Selenium Webdriver — WINAOWScciioveeiiiieiiiiiiieiiiienineeeinsessssssessssssessssssessssssessssssssssssssessenns 66
Selenium Webdriver — AlrtS.......ouiiiiiiiiiiiiiiiiiietiiieieiieeiseeessresseeiesssesiessnesssstessssseesens 68
Selenium Webdriver — Handling Linkscccoviiiiiiiiiiiiiiiiisssnssssssssssssssssssssssenn 70
Selenium Webdriver — Handling Edit BOXESccoviiiiiiiiiiiiiiiiniiiiiiiniisssssssssssssssssssssssssssssssssssssns 73
Selenium Webdriver — Color SUPPOItcciiiiiiiiiiiiiiiiisssssssssssssssssssssss s ssssssssssssssssenns 75
Selenium Webdriver — Generating HTML Test Reports in Python........cccooiereeiiiiiiiiireeccccinnrrerececcceenees 76
Selenium Webdriver — Read/Write data from EXCElcvvvvreerieiiiiiiiiiiiiieeeeeeeeeeeeeeseeeeseeeeeseseesssesessssessenes 79
Selenium Webdriver — Handling CheckboXes..........cooiiiiireeiiiiiiiiiccccnrrrnrrneecccss s e s s sennnssssessenes 82
Selenium Webdriver — Executing Tests in Multiple BrOWSEIScccceeiiiiiiiiimeeeciiiiiiiieenesssesnnneeennnssseenene 85
Selenium Webdriver — Headless EXECULION.........ccovuuereeiiiiiiiiietieeiicceerec e aaee 89
Selenium Webdriver — Wait SUPPOItccciiiiiiiiiiiiiiiis s s s s s s s s s s s s sssnnns 91
Selenium Webdriver — Select SUPPOrtcccciiiiiiiiiiiiiiii s s e e 93
Selenium Webdriver — JavaScript EXECULOF.......cciiiiiiiiiiiiiiiiiiiiiiiinnisies s sssssssssssssssssssssssssssssssssssnns 96
L) T oLV =T o 1 | PP PPPPPRRN 97
Selenium Webdriver — Chrome WebDriver OptioNnscc..ccciiiiieeeeeeicciiriiieeeesscessseeeeensssssssseeesnnssssssssenes 99
Selenium Webdriver — Scroll Operations.........ceeeeeceiiiiiieeieeciciiiireeieersee e s e reneesese s s s e s eenassssssssesennnnssnnns 101
Selenium Webdriver — Capture SCreenshots...........ciiiiiiiiieciiiiiiiieeieerrces e rernesse s s s e s e e nansssesssessennanssnnns 103

YEASYLEARMNING

@ tutorialspoint

31. Selenium Webdriver — Right Click...

32. Selenium Webdriver — Double Click

w tutorialspoint

Selenium Webdriver

NG

1. Selenium Webdriver — Introduction

Selenium Webdriver is a robust tool for testing the front end of an application and to
perform tasks on the browser. Selenium tests can be created in multiple programming
languages like Python, Java, C#, JavaScript, and so on.

Selenium with Python combination is comparatively easy to understand and it is short in
verbose. The APIs available in Python enable us to create a connection with the browser
using Selenium.

Selenium provides various Python commands which can be used for creating tests for
different browsers like Chrome, Firefox, IE, and so on. It can be used in various
platforms like Windows, Mac, Linux, and so on.

Reasons to learn Selenium with Python
e Python is easier to learn and compact in terms of programming.
e While creating tests in Selenium with Java, we have to take care of the beginning
and ending braces. In Python, simply code indentation needs to be taken care of.

e Tests developed in Selenium with Python run faster than those written in Java.

Reasons to learn Selenium Webdriver
The reasons to learn Selenium Webdriver are mentioned below:
e Itis open source and comes without any licensing cost.

e It can perform mouse and keyboard actions like drag and drop, keypress, click

and hold, and so on.
e It has a very friendly API.

e It can be integrated with frameworks like TestNG and JUnit, build tools like

Maven, continuous integration tools like Jenkins.
e It has a huge community support.

e It can execute test cases in headless mode.

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

2. Selenium Webdriver — Installation

The installation and setup of Selenium webdriver in Python can be done with the steps
listed below:

Step 1: Navigate to the site having the below link:

https://www.python.org/downloads/

Step 2: Click on the Download Python <version number> button.

https://www.python.org/downloads/ @ 67% wee f{ Q Search

Python

e python’ N

About Downloads Documentation Community Success Stories ETS Events

Download the latest version for Windows r‘\\ \\.\ \

Looking for Python w iffere wthon for Windows,
Linux/U

Want to help test development versions of Python? P
Dacker

Looking for Python 2.72 See below for specific releases

PSF March Membership Drive - renew today & | | PSF March 2021 Membership Drive

Active Python Releases

For more information visit the Python Developer's Guide.

Python version Maintenance status First released End of support Release schedule
3.9 bugfix 2020-10-05 2025-10 PEP 596
3.8 bugfix 2019-10-14 2024-10 PEP 569
3.7 security 2018-06-27 2023-06-27 PEP 537

Step 3: The executable file for Python should get downloaded in our system. On clicking
it, the Python installation page should get launched.

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://www.python.org/downloads/

Selenium Webdriver

& Python 3.9.2 (64-bit) Setup

Install Python 3.9.2 (64-bit)

(%

Select Install Now to install Python with default settings, or choose

Customize to enable or disable features.

@ Install Now
C:\Users\ghsbkor\AppData\Local\Programs\Python\Python39

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

python

for M Install launcher for all users (recommended)

windows

[J Add Python 3.9 to PATH

Step 4: Python should be downloaded in the following path:

C:\Users\<User>\AppData\Local\Programs\Python\Python<version>

Cancel

Step 5: For the Windows users, we have to configure the path of the Python and the

Scripts folder (created inside the Python folder) in the Environment variables.

PC » LocalDisk(C:) » Users » Owner » AppData » Local » Programs > Python > Python

P

] Name
DLLs

Doc
include
Lib

libs
Scripts
tcl

Tools
| | LICENSE
|| NEWS
P python

Date modified

10/1
10/1

2019 1:27 PM
2019 1:27 PM
2018 1:27 PM
2019 1:27 PM
3/2019 7:45 AM
2019 1:27 PM
2019 1:27 PM
019 7:33 PM
019 7:33 PM
019 7:31 PM

Type

File folder
File folder
File foldes
File folder
File folder
File folder
File folder
File folder

Text Document
Text Document

Application

Size

Step 6: To check if Python has successfully installed, execute the command: python --

version. The Python version should get displayed.

Step 7: For the Selenium bindings installation, run the command mentioned below:

' tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

pip install selenium.

Step 8: A new folder called the Selenium should now be generated within the Python
folder. To upgrade to the latest Selenium version, run the command given below:

pip install --U selenium.

Step 9: To verify if Selenium has been installed properly, execute the command
mentioned below:

pip show Selenium.

Step 10: Next, we have to download the Python editor called PyCharm from the below
link:

https://www.jetbrains.com/pycharm/

Step 11: Click on Download.

jetbrains.com/pycharm/

Charm What's New

PyCharm

The Python IDE
for Professional Developers

DOWNLOAD

Full-fledged Professional or Free:Community

Step 12: For Selenium webdriver in Python, click on the Download button which is
below the Community version (free for use).

@j Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

https://www.jetbrains.com/pycharm/

Selenium Webdriver

Download PyCharm

Windows macOS Linux

Professional Community

For both Scientific and Web Python For pure Python development
development. With HTML, JS, and SQL

support.

Step 13: After installation of PyCharm, we have to create a new project from File ->
New Project -> Give a project name, say pythonProjectTest. Then, click on Create.

Step 14: We have to create a Python package by right-clicking on the new project we
created in Step13, click on New then select Python Package. Give a package name, say
SeleniumTest and proceed.

Project v D =T == & — & main.py o testlpy
pythonProjectTest eplpninm weahdriver

New Scratch File
Directory
Python Package

> i 7
SeleniumTest % cut X

. Xony I8 Copy #C
emam.p)./ ‘ Copy Path...
> lllh External Libraries [Paste ¥V @ Python File

Step 15: We have to create a Python file by right-clicking on the new package we
created in Step 14, click on New then select Python File. Give a package name, say
testl.py and proceed.

pythonProjectTest selenium

drivers driver = \
eleniumlest wehdriver Chrname
venv New File

% main ¢ New Scratch File

4
> |l Externa K Cut Directory

B Copy
Copy Path...
O Paste

p Scratch Python Package

Step 16: To view the Selenium packages in our project, click on External Libraries and
then expand the site-packages folder.

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

pythonProjectTest
drivers
SeleniumTest
& __ init___.py
o testl.py
venv
2 main.py

Il External Libraries
& < Python 3.8 (venv) >

Binary Skeletons

>

> Extended Definitions
> lib-dynload
)

I site-packages |prary root
_distutils_hack

pip

pip-21.0.1.dist-info
pkg_resources

selenium
selenium-3.141.0.dist-info

setuptools
setuptools-56.0.0.dist-info
urllib3
urllib3-1.26.4.dist-info
distutils-precedence.pth

® L\ - .
@tutnmalspnmt

N ONL ONGE NN N AN N NN

3. Selenium Webdriver — Browser Navigation

We can open a browser and navigate to an application with the help of Selenium
webdriver in Python. This is done with the help of the get method. While automating a
test, the very first step that we create is launching an application with a URL.

The syntax of Selenium Webdriver is as follows:

driver.get("<url>")

driver.get("https://www.tutorialspoint.com/index.htm")

For a get method, the webdriver waits till the page is completely loaded before moving
to the next step. If we try to launch a web page having numerous AJAX calls, then the
webdriver is unaware when the page is completely loaded.

To fix this issue, we have to apply waits in our code.
Code Implementation

The code implementation for selenium webdriver is as follows:

from selenium import webdriver

#set chromedriver.exe path

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#url launch
driver.get("https://www.tutorialspoint.com/questions/index.php")
#get page title

print('Page title: ' + driver.title)

#quit browser

driver.quit()

Output

The output is given below:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python

Page title: The Best Technical Questions And Answers

Process finished with exit code 0

The output shows the message - Process with exit code 0. This means that the above
Python code executed successfully. Also, the page title of the application (obtained from
the driver.title method) - The Best Technical Questions and Answers get printed in the
console.

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

4. Selenium Webdriver — Identify Single Element

Once we navigate to a webpage, we have to interact with the web elements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

Byld

For this, our first job is to identify the element. We can use the id attribute for an
element for its identification and utilize the method find_element_by_id. With this, the
first element with the matching value of the attribute id is returned.

In case there is no element with the matching value of the id attribute,
NoSuchElementException shall be thrown.

The syntax for identifying an element is as follows:

driver.find_element_by_ id("value of id attribute")

Let us see the html code of a web element:

YOl are hrow
input#gsc-i-id1.gsc-input 663 x 34

ENHANCED BY Google

Sources Network Performance Memory Application Security Lighthouse

=""gsc-input">
ass='""gsc-input-box" id="gsc-iw-id1l">
> cellspacing="0" cellpadding="0" id="gs_id50" class="gst1_50 gsc-input" style="width: 100%; paddin

dy->

r>
<td id="gs_tti50" class="gsib_a">

autocomplete="off" type="text" size="10" class='"gsc—-input' name="search" title="search" id-
:lirﬂ'ltr’ spellcheck="false" style="width: 100%; padding: @px; border: none; margin: -
0.0625em Opx Opx; height: 1.25em; background: url("https://www.google.com/cse/static/images/1x/en/
branding.png") left center no-repeat rgb(255, 255, 255); outline: none;"> == $0
</td>

The edit box highlighted in the above image has an id attribute with value gsc-i-id1. Let
us try to input some text into this edit box after identifying it.

Code Implementation

The code implementation of identifying a web element is as follows:

from selenium import webdriver

#set chromedriver.exe path

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

driver = webdriver.Chrome(executable path='../drivers/chromedriver")
#url launch

driver.get("https://www.tutorialspoint.com/index.htm")

#identify edit box with id

1 = driver.find_element_by id('gsc-i-idl")

#input text

l.send_keys('Selenium')

#obtain value entered

v = l.get_attribute('value')

print('Value entered: + V)
#driver quit

driver.quit()

Output

The output is given below:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest

Value entered: Selenium

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Selenium gets printed in the console.

By Name

Once we navigate to a webpage, we have to interact with the web elements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can use the name attribute for an
element for its identification and utilize the method find_element_by_name. With this,
the first element with the matching value of the attribute name is returned.

In case there is no element with the matching value of the name attribute,
NoSuchElementException shall be thrown.

The syntax for identifying single element by name is as follows:

driver.find_element_by name("value of name attribute")

Let us see the html code of a web element as given below:

w tutorialspoint

Selenium Webdriver

resource 1or Online

input#gsc-i-idi.gsc-input 663 x 34

sources Network Performance Memory Application Security Lighthouse

gsc—-input

ss="gsc—input-box" id="gsc-iw-idl

cellspacing="0" cellpadding="0" id="gs_id50" class="gstl_50 gsc-input" style="width: 100%; pad
X3

ly

td id="gs_tti50" class="gsib_a
input autocomplete="off" type="text" size="10" class="gsc-input" |name="search”|title="search
id="gsc-i-id1" dir="1tr" spellcheck="false" style="width: 100%; padding: Opx; border: none; ma
rgin: -0.0625em @px @Opx; height: 1.25em; background: url("https://www.google.com/cse/static/im
ages/1x/en/branding.png") left center no-repeat rgb(255, 255, 255); outline: none;"> == $0

/td

The edit box highlighted in the above image has a name attribute with value search. Let
us try to input some text into this edit box after identifying it.

Code Implementation

The code implementation of identifying single element by name is as follows:

from selenium import webdriver

#set chromedriver.exe path

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#url launch
driver.get("https://www.tutorialspoint.com/index.htm")
#identify edit box with name

1 = driver.find_element_by_name('search"')

#input text

l.send_keys('Selenium Java')

#obtain value entered

v = 1l.get attribute('value')

print('Value entered: + V)
#driver close

driver.close()

Output

The output is as follows:

10

MPLYEASYLEARMNINIG

I&j Mtutorialspoint

Selenium Webdriver

[/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python
Value entered: Selenium Java

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Selenium Java gets printed in the console.

By ClassName

Once we navigate to a webpage, we have to interact with the web elements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can use the class attribute for an
element for its identification and utilise the method find_element_by_class_name. With
this, the first element with the matching value of the attribute class is returned.

In case there is no element with the matching value of the class attribute,
NoSuchElementException shall be thrown.

The syntax for identifying single element by Classname is as follows :

driver.find_element_by class_name("value of class attribute")

Let us see the html code of a web element as given below:

li.heading 310.39 x 54

Elements Console Sources Network Performance

~u.LVv CLAoOo— HNuL—LuLTHniu—a LULUI LauLuT LuUL ~

»<div class="mini-logo">..</div>

The web element highlighted in the above image has a class attribute with value
heading. Let us try to obtain the text of that element after identifying it.

Code Implementation

The code implementation of identifying single element by Classname is as follows:

11

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

from selenium import webdriver

#set chromedriver.exe path

driver = webdriver.Chrome(executable_path="'../drivers/chromedriver")
#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify edit box with class

1 = driver.find_element_by_class_name('heading')

#identify text
v = 1l.text
#text obtained
print('Text is:
#driver close

driver.close()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python
Text is: About Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the text of the webelement (obtained from the
text method) - About Tutorialspoint gets printed in the console.

By TagName

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can use the tagname for an element
for its identification and utilise the method find_element_by_tag_name. With this, the
first element with the matching tagname is returned.

In case there is no element with the matching tagname, NoSuchElementException shall
be thrown.

The syntax for identifying single element by Tagname is as follows:

driver.find_element_by_tag name("tagname of element")

Let us see the html code of a web element as given below:

12

w tutorialspoint

Selenium Webdriver

braweing the best resource for Online Ed
input#gsc-i-id1.gsc-input 663 x 34

has changed. To apply this change to DevTools, reload. Ja{z{[F-ls RpI=\VaTeTel

Sources Network Performance Memory Application Security Lighthouse

gsc-input

1ss=""gsc-input-box" id="gsc-iw-idl

+ cellspacing="0" cellpadding="0" id="gs_id50" class="gstl_50 gsc-input" style="width: 100%; pad

0X;

dy

=

td id=""gs_tti50" class=""gsib_a

I input]autocomplete="off" type="text" size="10" class="gsc—input" name="search" title="search
1d="gsc-i-id1" dir="1tr" spellcheck="false" style="width: 100%; padding: Opx; border: none; ma
rgin: -0.0625em Opx @px; height: 1.25em; background: url("https://www.google.com/cse/static/im
ages/1x/en/branding.png") left center no-repeat rgb(255, 255, 255); outline: none; == $0

/td

The edit box highlighted in the above image has a tagname - input. Let us try to input
some text into this edit box after identifying it.

Code Implementation

The code implementation of identifying single element by Tagname is as follows:

from selenium import webdriver

#set chromedriver.exe path

driver = webdriver.Chrome(executable path="../drivers/chromedriver")
#url launch
driver.get("https://www.tutorialspoint.com/index.htm")
#identify edit box with tagname

1 = driver.find_element_by tag name('input')

#input text

1l.send_keys('Selenium Python')

#obtain value entered

v = l.get_attribute('value')

print('Value entered: + V)
#driver close

driver.close()

Output

The output is as follows

13

MPLYEASYLEARMNINIG

I&j Mtutorialspoint

Selenium Webdriver

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python

Value entered: Selenium Python

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Selenium Python gets printed in the console.

By Link Text

Once we navigate to a webpage, we may interact with a webelement by clicking a link to
complete our automation test case. The link text is used for an element having the
anchor tag.

For this, our first job is to identify the element. We can use the link text attribute for an
element for its identification and utilize the method find_element_by_link_text. With
this, the first element with the matching value of the given link text is returned.

In case there is no element with the matching value of the Ilink text,
NoSuchElementException shall be thrown.

The syntax for identifying single element by Link Text is as follows:

driver.find_element_by link_ text("value of link text")

Let us see the html code of a web element as given below:

g INslArnl

a 139.36x30 Currently we are looking
; : mentioned technologies:
o Privacy Policy

¢ Accounting/Financt
Cookies Policy

T fU o Electrical/Electronit
erms of Use

[w dj Elements Console Sources Network Performance Memory
Privacy Policy|== $0

The link highlighted in the above image has a tagname - a and the link text - Privacy
Policy. Let us try to click on this link after identifying it.

Code Implementation

The code implementation of identifying single element by Link Text is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path='../drivers/chromedriver')

14

MPLYEASYLEARMNINIG

w Mtutorialspoint

Selenium Webdriver

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify link with link text

1 = driver.find_element_by_ link_text('Privacy Policy')

#tperform click

l.click()

print('Page navigated after click: ' + driver.title)

#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python /Users
Page navigated after click: About Privacy Policy at Tutorials Point - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application (obtained from
the driver.title method) - About Privacy Policy at Tutorials Point - Tutorialspoint gets
printed in the console.

By Partial Link Text

Once we navigate to a webpage, we may interact with a web element by clicking a link
to complete our automation test case. The partial link text is used for an element having
the anchor tag.

For this, our first job is to identify the element. We can use the partial link text attribute
for an element for its identification and utilize the method
find_element_by_partial_link_text. With this, the first element with the matching value
of the given partial link text is returned.

In case there is no element with the matching value of the partial link text,
NoSuchElementException shall be thrown.

The syntax for identifying single element by Partial Link Text is as follows:

driver.find_element_by partial_link_text("value of partial ink text")

Let us see the html code of a web element as given below:

15

w tutorialspoint

Selenium Webdriver

we collect from you or what ir
our policy from time to time, so

o Refund Policy

More Links As a user of www.tutorialspoin
any information with us. This P

a Write for us

® ﬂ Elements Console Sources Network Performance Memory Ap
.71
v
 == $0
</1li>

The link highlighted in the above image has a tagname - a and the partial link text -
Refund. Let wus try to click on this link after identifying it.

Code Implementation

The code implementation for identifying single element by Partial Link Text is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify link with partial link text

1 = driver.find_element_by_partial_link_text('Refund")

#tperform click

1l.click()

print('Page navigated after click: ' + driver.title)

#driver quit

driver.quit()

Output

The output is as follows:

[/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python /UsH

Page navigated after click: Return, Refund, & Cancellation Policy - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application (obtained from
the driver.title method) - Return, Refund & Cancellation Policy - Tutorialspoint gets
printed in the console.

16

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

By CSS Selector

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can create a css selector for an
element for its identification and use the method find_element_by_css_selector. With
this, the first element with the matching value of the given css is returned.

In case there is no element with the matching value of the css, NoSuchElementException
shall be thrown.

The syntax for identifying single element by CSS Selector is as follows:

driver.find_element_by css_selector("value of css")

Rules to create CSS Expression

The rules to create a css expression are discussed below:

e To identify the element with c¢css, the expression should be
tagname[attribute="value']. We can also specifically use the id attribute to create
a Css expression.

e With id, the format of a css expression should be tagname#id. For example,
input#txt [here input is the tagname and the txt is the value of the id attribute].

e With class, the format of css expression should be tagname.class. For example,
input.cls-txt [here input is the tagname and the cls-txt is the value of the class
attribute].

o If there are n children of a parent element, and we want to identify the nth child,

the css expression should have nth-of -type(n).

“toc reading™>

w <ul Cjjass=

<1i class="sreading"»Selected Reading</li»
w
UPSC IAS Exams Notes
<fli»
w
Developer s Best Practices
<flix
w<lis
Questions and Answers
<11
w <1li>
Effective Resume Writing</fa>
<f1ix
w ol
HR Interview Questions</fa>
<f1lix
wclis

Computer Glossary

<a target="_top"” href="/computer whoiswho.htm"»Who is Who</a»

M tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

17

Selenium Webdriver

In the above code, if we want to identify the fourth li childof ul[Questions and Answers],
the css expression should be ul.reading li:nth-of-type(4). Similarly, to identify the last
child, the css expression should be ul.reading li:last-child.

For attributes whose values are dynamically changing, we can use ~= to locate an
element whose attribute value starts with a particular text. For example,
input[name”='ga'] Here, input is the tagname and the value of the name attribute starts
with ga.

For attributes whose values are dynamically changing, we can use $= to locate an
element whose attribute value ends with a particular text. For example,
input[class$="txt'] Here, input is the tagname and the value of the class attribute ends
with txt.

For attributes whose values are dynamically changing, we can use *= to locate an
element whose attribute value contains a specific sub-text. For example,
input[name*='nam'] Here, input is the tagname and the value of the name attribute
contains the sub-text nam.

Let us see the html code of a web element as given below:

EEIEEC IR EIEEATTATY I

input#gsc-i-id1.gsc-input 663 x 34

ources Network Performance Memory Application Security Lighthouse

:d id="gs_tti50" class='""gsib_a

input autocomplete="off" type="text" size="10" class='"gsc—input" name="search" title="search" id="gsc-i-id1l" dir="1t
r'' spellcheck="false" style="width: 100%; padding: @px; border: none; margin: -0.0625em @px @Opx; height: 1.25em; back
ground: url("https://www.google.com/cse/static/images/1x/en/branding.png") left center no-repeat rgb(255, 255, 255);
outline: none; == $0

The edit box highlighted in the above image has a name attribute with value search, the
css expression should be input[name="search']. Let us try to input some text into this
edit box after identifying it.

Code Implementation

The code implementation of identifying single element by CSS Selector is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable path="'../drivers/chromedriver')
#implicit wait time

driver.implicitly wait(5)

#url launch

driver.get("https://www.tutorialspoint.com/index.htm")

#identify element with css

1 = driver.find_element_by css_selector("input[name='search']")
l.send_keys('Selenium Python')

v = l.get_attribute('value')

print('Value entered is: + V)

18

EIMPLYEAGSYLEARMNINIG

I&j Mtutorialspoint

Selenium Webdriver

#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest

Value entered is: Selenium Python

Process finished with exit code 0O

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Selenium Python gets printed in the console.

ByXpath
Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can create an xpath for an element
for its identification and use the method find_element_by_xpath. With this, the first
element with the matching value of the given xpath is returned.

In case there is no element with the matching value of the xpath,
NoSuchElementException shall be thrown.

The syntax for identifying single element by Xpath is as follows:

driver.find_element_by_ xpath("value of xpath")

Rules to create Xpath Expression
The rules to create a xpath expression are discussed below:
e To identify the element with xpath, the expression should be
//tagname[@attribute="value']. There can be two types of xpath - relative and
absolute. The absolute xpath begins with / symbol and starts from the root node

upto the element that we want to identify.

For example,

/html/body/div[1]/div/div[1]/a

e The relative xpath begins with // symbol and does not start from the root node.

For example,

19

EIMPLYEAEBEYLEARHNINTIG

w Mtutorialspoint

Selenium Webdriver

//img[@alt="tutorialspoint']

Let us see the html code of the highlighted link - Home starting from the root.

th Jobs <7 QIA 5 </>Coding Ground & UPSC Notes [l Whiteboard [Tutorix

» {:} Inspector Console O Debugger N Network {3} Style Editor (D) performance 4k Memory E Storage]" Accessibility %5 What's Ne

+

<html class="fontawesome-i2svg-active fontawesome-12svg-complete"” lang="en-US"»> levent |scroll
<!--<![endif]--»
head> (=< /head
<body>
<!--Start of Body Content--»>
<div class="mui-appbar-home">
<div class="mui-container™»
: :before
<div class="tp-primary-header mui-top-home™>
- ™ index.htm™ target="_blank" title="TutorialsPeint - Home™"»
vg-inline--fa fa-home fa-w-18" aria-hidden="true" data-prefix="fa" data-icon="home" rdle="img" xmlns="http://www.w3.org/2000/svg"
> @ 576 512" data-fa-i2swvg=""»l""¢/svg>
<!--<i class="fa fa-home"></is-->

whitespace
<spanrHome»
Llas
</fdiv>
<div class="tp-primary-header mui-top-qa™» = </div>
<div class="tp-primary-header mui-top-qa"» = </div>
<div class="tp-primary-header mui-top-tools"» = </div>»
<div class="tp-primary-header mui-top-coding-ground™> = </div>
<div class="tp-primary-header mui-top-upsc™ = </div>
<div class="tp-primary-header mui-top-whiteboard™ (= </div>
<div class="tp-primary-header mui-top-tools"» == </div>
<div class="tp-primary-header mui-top-tools"» = </div>
::after
<fdivs

The absolute xpath for this element can be as follows:

/html/body/div[1]/div/div[1]/a.

(t Home th Jobs <7 QA ©55 Tools </> Coding Ground & UPSC Notes 2l Whiteboard

a | 479 x 136

'C} Inspector Console [© Debugger N Network {3} Style Editor () performance 1k Me
Run N I Q X @I

$x("/html/body/div[1]/div/div[1]/a") » $x("/html/body/div[1]/div/div[1]/a")
& pArray [a]

Click to select the node in the inspector ‘

The relative xpath for element Home can be as follows:

//a[@title="TutorialsPoint - Home'].

20

EIMPLYEAGSYLEARMNINIG

j' tutorialspoint

Selenium Webdriver

(t Home th Jobs <7 QA 215 Tools </> Coding Ground & UPSC Notes 2] Whiteboard

a 479 x 136

{:} Inspector Console © Debugger TJ, Network {} Style Editor m Performance {}E Me

Run AVQX@

$x("//a[@title="TutorialsPoint - Home|']") » $x("//a[@title="TutorialsPoint - Home']")
& » Array [a%]

Functions
There are also functions available which help to frame relative xpath expressions.
text()

It is used to identify an element with its visible text on the page. The xpath expression is
as follows:

//*[text()="Home"'].

- Home th Jobs <7 QIA &% Tools <[> Coding Ground

span | 31.2 x 18

'l:} Inspector Console [© Debugger T¢ Network {} Style Editor (D Perd

Run /\\/QX@

$x("//*%[text()="Home"]") % $x("//*[text()="Home"]")

€& » Array [span %]

starts-with

It is used to identify an element whose attribute value begins with a specific text. This
function is normally used for attributes whose value changes on each page load.

Let us see the html of the link Q/A:

21

MPLYEASYLEARMNINIG

w Mtutorialspoint

Selenium Webdriver

fat Home h Jobs < QA fiii— I <[> Coding Ground & UPSC Notes [l Whiteboard [Ch Tutorix =4 Login
[PPTRINE N
D Inspector Console O Debugger T»L Network {} Style Editor O Performance ﬁ Memory B Storage "-[Accessibility ='= Whe
arch HT + .

w
b <svg class="svg-inline--fa fa-home fa-w-18" aria-hidden="true" data-prefix="fa" data-icon="home" role="img" xmlns="http://www.w3.org
[/2088/svg" viewBox="0 @ 576 512" data-fa-i2svg=""»l--</svg>
¢l--<i class="fa fa-home"></i>-->»

whitespace
Home
<fa»
<fdivs
¥ <div class="tp-primary-header mui-top-ga"> »/</div>

target="_blank" title="Questions & Answers - The Best Technical Questions and

b <svg class="svg-inline--fa fa-location-arrolw fa-w-16" aria-hidden="true" data-prefix="fa" data-icon="location-arrow” role="img"
xmlns="http://wew.w3.org/2000/svg" viewBox="0 @ 512 512" data-fa-i2svg=""» = </svg>

¢l--<i class="fa fa-location-arrow"></i>--»
whitespace
Q/A

<fa»

The xpath expression should be as follows:

//a[starts-with(@title, 'Questions &')].

{at Home th Jobs </> Coding Ground & UPSC Notes

{:} Inspector Console [© Debugger TJy Network {} Style Editor m Performance ﬁ Men

> Run /\ A4 Q x @

$x("//a[starts-with(@title, 'Questions &')]") » $x("//a[starts-with(@title, 'Questions &')]")
< »Array [a 1

Click to select the node in the inspector

contains()
It identifies an element whose attribute value contains a sub-text. This function is
normally used for attributes whose value changes on each page load.

The xpath expression is as follows:

//a[contains(@title, 'Questions & Answers')].

22

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

fat Home {th Jobs 7 QA ©i; Tools <f> Coding Ground & UPSC Notes [l Whitebd
a | 35.2 =% 13.6
s_sesane 7N
{3 Inspector Consale [Debugger ‘Nr Network {} Style Editor O Performance EEE Memory E Stol
Run A v Q X W
$x("//a[contains(@title, "Questions & Answers’)]") » $x("//alcontains(@title, 'Questions & Answers')]")

Array [a 1
Click to select the node in the inspector

Let us see the html code of a webelement as shown below:

EEIEEC IR EIEEATTATY I

input#gsc-i-id1.gsc-input 663 x 34

ources Network Performance Memory Application Security Lighthouse

:d id="gs_tti50" class="gsib_a

input autocomplete="off" type="text" size="10" class=""gsc-input' name="search” title="search" id="gsc-i-idl" dir="1t
r' spellcheck="false" style="width: 100%; padding: @px; border: none; margin: -0.0625em @px @px; height: 1.25em; back
ground: url("https://www.google.com/cse/static/images/1x/en/branding.png") left center no-repeat rgb(255, 255, 255);
outline: none; == $0

The edit box highlighted in the above image has a name attribute with value search, the
xpath expression should be //input[@name="search']. Let us try to input some text into
this edit box after identifying it.

Code Implementation

The code implementation of identifying single element by XPath is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch

driver.get("https://www.tutorialspoint.com/index.htm")

#identify element with xpath

1 = driver.find_element_by_xpath("//input[@name="search']")
1l.send_keys('Selenium Python')

v = 1l.get _attribute('value')

print('Value entered is: + V)
#driver quit

driver.quit()

Output

The output is as follows

23

w Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest
Value entered is: Selenium Python

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Selenium Python gets printed in the console.

24

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

AllSelenium Webdriver — Identify Multiple

Elements

In this chapter, we will learn how to identify multiple elements by various options. Let us
begin by understanding identifying multiple elements by Id.

Byid

It is not recommended to identify multiple elements by the locator id, since the value of
an id attribute is unique to an element and is applicable to a single element on the page.

By Class name

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the elements. We can use the class attribute for
elements for their identification and utilise the method find_elements_by_class_name.
With this, all the elements with the matching value of the attribute class are returned in
the form of list.

In case there are no elements with the matching value of the class attribute, an empty
list shall be returned.

The syntax for identifying multiple elements by Classname is as follows:

driver.find_elements_by class_name("value of class attribute")

Let us see the html code of webelements having class attribute as given below:

= - — o m— — e — — -—— - Y F e —

ul class="toc chapters'=}. == %0
»Ful class="toc chapters's}|.</ul
»<ul class="toc reading'=..</ul

The value of the class attribute highlighted in the above image is toc chapters. Let us
try to count the number of such webelements.

Code Implementation

The code implementation for identifying multiple elements by Classname is as follows:

from selenium import webdriver
driver = webdriver.Chrome(executable path='../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

25

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#tidentify elements with class attribute

1 = driver.find_elements_by class_name("chapters")

#tcount elements

s = len(l)

print('Count is:')

print(s)

#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv

Count is:
2

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the total count of webelements having the class
attributes value chapters (obtained from the len method) - 2 gets printed in the console.

By Tagname

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the elements. We can use the tagname for elements
for their identification and utilise the method find_elements_by_tag_name. With this, all
the elements with the matching value of the tagname are returned in the form of list.

In case there are no elements with the matching value of the tagname, an empty list
shall be returned.

The syntax for identifying multiple elements by Tagname is as follows:

driver.find_elements_by_ tag name("value of tagname")

Let us see the html code of a webelement, which is as follows:

26

w tutorialspoint

Selenium Webdriver

You are browsing the best resource for Online Education

Elements Console Sources Network Performance Memory Application Security Lighthouse
<hd>
"You are browsing the best resource for "

>Online Education

The value of the tagname highlighted in the above image is h4. Let us try to count the
number of webelements having tagname as h4.

Code Implementation

The code implementation for identifying multiple elements by Tagname is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("https://www.tutorialspoint.com/index.htm")
#identify elements with tagname

1 = driver.find_elements_by_tag name("h4")

#count elements

s = len(l)

print('Count is:")

print(s)

#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest

Count 1is:
1

Process finished with exit code 0O

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the total count of webelement having the
tagname as h4 (obtained from the len method) - 1 gets printed in the console.

27

MPLYEASYLEARMNINIG

w Mtutorialspoint

Selenium Webdriver

By Partial Link Text

Once we navigate to a webpage, we may have to interact with the webelements by
clicking a link to complete our automation test case. The partial link text is used for
elements having the anchor tag.

For this, our first job is to identify the elements. We can use the partial link text attribute
for elements for their identification and utlize the method
find_elements_by_partial_link_text. With this, all the elements with the matching value
of the given partial link text are returned in the form of a list.

In case there are no elements with the matching value of the partial link text, an empty
list shall be returned.

The syntax for identifying multiple elements by Partial Link Text is as follows:

driver.find_elements_by partial_ link_text("value of partial link text")

Let us see the html code of link, which is as follows:

a 134.36x30 o » Accounting/Finance/E
¢ Electrical/Electronic Ei
o Terms of Use

[x ﬂ Elements = Console Sources Network

S Ll AwmS/ LLA

=
Terms of Use

The link highlighted - Terms of Use in the above image has a tagname - a and the partial
link text - Terms. Let us try to identify the text after identifying it.

Code Implementation

The code implementation for identifying multiple elements by Partial Link Text is as
follows:

from selenium import webdriver

driver = webdriver.Chrome(executable path="'../drivers/chromedriver')
#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify elements with partial link text

1 = driver.find_elements_by partial link_ text('Terms')

#count elements

s = len(l)

#iterate through list

for 1 in 1:

28

MPLYEASYLEARMNINIG

w Mtutorialspoint

Selenium Webdriver

#obtain text

t = i.text
print('Text is: ' + t)
#driver quit

driver.quit()

Output

The output is given below:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/ven

Text is: Terms of use

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the text of the link identified with the partial
link text locator (obtained from the text method) - Terms of use gets printed in the
console.

By Link Text

Once we navigate to a webpage, we may have to interact with the webelements by
clicking a link to complete our automation test case. The link text is used for elements
having the anchor tag.

For this, our first job is to identify the elements. We can use the link text attribute for
elements for their identification and utilize the method find_elements_by_link_text. With
this, all the elements with the matching value of the given link text are returned in the
form of a list.

In case there are no elements with the matching value of the link text, an empty list
shall be returned.

The syntax for identifying multiple elements by Link Text is as follows:

driver.find_elements_by_link_text("value of link text")

Let us see the html code of link, which is as follows:

29

EIMPLYEAEBEYLEARHNINTIG

w Mtutorialspoint

Selenium Webdriver

a 14438x30 o mentioned technologies:
e Accounting/Finance/
o Cookies Policy

Elements Console Sources Network Performance Memory

».
v

Cookies Policy

The link highlighted - Cookies Policy in the above image has a tagname - a and the link
text - Cookies Policy. Let us try to identify the text after identifying it.

Code Implementation

The code implementation for identifying multiple elements by Link Text is as follows:

from selenium import webdriver
driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time
driver.implicitly wait(5)
#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify elements with link text
1 = driver.find_elements_by link_text('Cookies Policy"')
#count elements
s = len(l)
#iterate through list
for i in 1:
#obtain text
t = i.text
print('Text is: ' + t)
#driver quit

driver.quit()

Output

The output is as follows:

30

w tutorialspoint

Selenium Webdriver

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest

Text is: Cookies Policy

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the text of the link identified with the link text
locator (obtained from the text method) - Cookies Policy gets printed in the console.

By Name

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the elements. We can use the name attribute of
elements for their identification and utilize the method find_elements_by_name. With
this, the elements with the matching value of the attribute name are returned in the
form of a list.

In case there is no element with the matching value of the name attribute, an empty list
shall be returned.

The syntax for identifying multiple elements by Name is as follows:

driver.find_elements_by name("value of name attribute")

Let us see the html code of an webelement, which is as follows:

Yallare prawalng fhe best resource 1or online Ed
input#gsc-i-idi.gsc-input 663 x 34

sources Network Performance Memory Application Security Lighthouse

gsc-input

s5s=""gsc—input-box" id="gsc-iw-id1l"

cellspacing="0" cellpadding="0" id="gs_id50" class="gstl_50 gsc-input" style="width: 100%; pad
X3

ly

td id="gs_tti50" class='"'gsib_a
input autocomplete="off" type="text" size="10" class="gsc—-input" |name="search”|title="search
id="gsc-i-id1" dir="1tr" spellcheck="false" style="width: 100%; padding: ©px; border: none; ma
rgin: -0.0625em @px @Opx; height: 1.25em; background: url("https://www.google.com/cse/static/im
ages/1x/en/branding.png") left center no-repeat rgb(255, 255, 255); outline: none; == $0
/td

The edit box highlighted in the above image has a name attribute with value search. Let
us try to input some text into this edit box after identifying it.

31

MPLYEASYLEARMNINIG

w Mtutorialspoint

Selenium Webdriver

Code Implementation

The code implementation for identifying multiple elements by Name is as follows:

from selenium import webdriver
driver = webdriver.Chrome(executable_path="'../drivers/chromedriver')
#implicit wait time
driver.implicitly wait(5)
#url launch
driver.get("https://www.tutorialspoint.com/index.htm")
#identify elements with name attribute
1 = driver.find_elements_by name('search')
#count elements
s = len(l)
#iterate through list
for i in 1:
#obtain text
t = i.send_keys('Selenium Python")
v = i.get_attribute('value')

print('Value entered is: + V)
#driver quit

driver.quit()

Output

The output is as follows

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/

Value entered is: Selenium Python

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Selenium Python gets printed in the console.

By CSS Selector

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

32

w tutorialspoint

Selenium Webdriver

For this, our first job is to identify the elements. We can create a css selector for their
identification and utilize the method find_elements_by_css_selector. With this, the
elements with the matching value of the given css are returned in the form of list.

In case there is no element with the matching value of the css, an empty list shall be
returned.

The syntax for identifying multiple elements by CSS Selector is as follows:

driver.find_elements_by css_selector("value of css")

Rules for CSS Expression

The rules to create a css expression are discussed below:

e To identify the element with c¢ss, the expression should be
tagname[attribute="'value']. We can also specifically use the id attribute to create
a Css expression.

e With id, the format of a css expression should be tagname#id. For example,
input#txt [here input is the tagname and the txt is the value of the id attribute].

e With class, the format of css expression should be tagname.class . For example,
input.cls-txt [here input is the tagname and the cls-txt is the value of the class
attribute].

e If there are n children of a parent element, and we want to identify the nth child,

the css expression should have nth-of -type(n).

“toc reading™>

¥ <pl class=
<1i class="sreading"»Selected Reading</li»

w
<a target="_top” href="jfupsc las exams.htm"sUPSC IAS Exams Notes</as
<fli»
w
Developer’s Best Practices</a:
<flix
w<lis
Questions and Answers</fa>
<11
w <1li>
Effective Resume Writing</fa>
<f1ix
w ol
HR Interview Questions</fa>
<f1lix
w »

Computer Glossary
<f1ix
w <lix
<a target="_top"” href="/computer whoiswho.htm"»Who is Who</a»
<f1ix
<ful>

In the above code, if we want to identify the fourth li child of ul[Questions and Answers],
the css expression should be ul.reading li:nth-of-type(4). Similarly, to identify the last
child, the css expression should be ul.reading li:last-child.

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

For attributes whose values are dynamically changing, we can use ~= to locate an
element whose attribute value starts with a particular text. For example,
input[name”~='ga'] [here input is the tagname and the value of the name attribute starts
with ga].

For attributes whose values are dynamically changing, we can use $= to locate an
element whose attribute value ends with a particular text. For example,
input[class$="txt'] Here, input is the tagname and the value of the class attribute ends
with txt.

For attributes whose values are dynamically changing, we can use *= to locate an
element whose attribute value contains a specific sub-text. For example,
input[name*='nam'] Here, input is the tagname and the value of the name attribute
contains the sub-text nam.

Let us see the html code of a webelement:

EEIEEC IR EIEEATTATY I .

input#gsc-i-id1.gsc-input 663 x 34

ources Network Performance Memory Application Security Lighthouse

:d id="gs_tti50" class='""gsib_a

input autocomplete="off" type="text" size="10" class='"gsc—input" name="search” title="search" id='"gsc-i-id1" dir="1t
r' spellcheck="false" style="width: 100%; padding: @px; border: none; margin: -0.0625em @px @px; height: 1.25em; back
ground: url("https://www.google.com/cse/static/images/1x/en/branding.png") left center no-repeat rgb(255, 255, 255);
outline: none; == $0

The edit box highlighted in the above image has a name attribute with value search, the
css expression should be input[name="search']. Let us try to input some text into this
edit box after identifying it.

Code Implementation

The code implementation for identifying multiple elements by CSS Selector is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable path="'../drivers/chromedriver')
#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("https://www.tutorialspoint.com/index.htm")
#identify elements with css

1 = driver.find_elements_by css_selector("input[name="search']")
#count elements

s = len(l)

#iterate through list

for i in 1:

#obtain text

t = i.send_keys('Tutorialspoint"')

34

MPLYEASYLEARMNINIG

I&j Mtutorialspoint

Selenium Webdriver

v = i.get_attribute('value')

print('Value entered is: + V)
#driver quit

driver.quit()

Output

The output is as follows:

[/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python
Value entered is: Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Tutorialspoint gets printed in the console.

By Xpath

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the elements. We can create an xpath for their
identification and utilize the method find_elements_by_xpath. With this, the elements
with the matching value of the given xpath are returned in the form of a list.

In case there is no element with the matching value of the xpath, an empty list shall be
returned.

The syntax for identifying multiple elements by Xpath is as follows:

driver.find_elements_by xpath("value of xpath")

Rules for Xpath Expression
The rules to create a xpath expression are discussed below:
e To identify the element with xpath, the expression should be
//tagname[@attribute="value']. There can be two types of xpath - relative and
absolute. The absolute xpath begins with / symbol and starts from the root node

upto the element that we want to identify.

For example,

/html/body/div[1]/div/div[1]/a

e The relative xpath begins with // symbol and does not start from the root node.

35

EIMPLYEAGSYLEARMNINIG

w Mtutorialspoint

Selenium Webdriver

For example,

//img[@alt="tutorialspoint’]

Let us see the html code of the highlighted link - Home starting from the root.

th Jobs <7 QIA 5 </>Coding Ground & UPSC Notes [l Whiteboard [Tutorix

a | 479 =136

» {:} Inspector Console O Debugger N Network {3} Style Editor (D) performance 4k Memory E Storage]" Accessibility %5 What's Ne

+

<html class="fontawesome-i2svg-active fontawesome-12svg-complete"” lang="en-US"»> levent |scroll
<!--<![endif]--»
head> (=< /head
<body>
<!--Start of Body Content--»>
<div class="mui-appbar-home">
<div class="mui-container™»
: :before
<div class="tp-primary-header mui-top-home™>
- w <3 href="https://www.tutorialspoint.com/index.htm” target="_blank" title="TutorialsPoint - Home">
svg-inline--fa fa-hol
"8 @ 576 512" data-fa-i2
<!--<i class="fa fa-home"></is-->

18" aria-hidden="true" data-prefix="fa" data-icon="home" rdle="img" xmlns="http
sl fsvgs

i w3 . org/20088/svg"

whitespace
<spanrHome»
L/
</fdiv>
<div class="tp-primary-header mui-top-qa™» = </div>
<div class="tp-primary-header mui-top-qa"» = </div>
<div class="tp-primary-header mui-top-tools"» = </div>»
<div class="tp-primary-header mui-top-coding-ground™> = </div>
<div class="tp-primary-header mui-top-upsc™ = </div>
<div class="tp-primary-header mui-top-whiteboard™ (= </div>
<div class="tp-primary-header mui-top-tools"» == </div>
<div class="tp-primary-header mui-top-tools"» = </div>
::after
<fdivs

The absolute xpath for the element Home can be as follows:

/html/body/div[1]/div/div[1]/a.

(t Home th Jobs <7 QA ©55 Tools </> Coding Ground & UPSC Notes 2l Whiteboard

a | 479 x 136

'C} Inspector Console [© Debugger N Network {3} Style Editor () performance 1k Me
Run N I Q X @I

$x("/html/body/div[1]/div/div[1]/a") » $x("/html/body/div[1]/div/div[1]/a")

& pArray [a]

Click to select the node in the inspector ‘

The relative xpath for element Home can be as follows:

//a[@title="TutorialsPoint - Home'].

36

EIMPLYEAGSYLEARMNINIG

j' tutorialspoint

Selenium Webdriver

(t Home th Jobs <7 QA 215 Tools </> Coding Ground & UPSC Notes 2] Whiteboard

a 479 x 136

{:} Inspector Console © Debugger TJ, Network {} Style Editor m Performance {}E Me

Run AVQX@

$x("//a[@title="TutorialsPoint - Home|']") » $x("//a[@title="TutorialsPoint - Home']")
& » Array [a%]

Functions
There are also functions available which help to frame relative xpath expressions:-
text()

It is used to identify an element with the help of the visible text on the page. The xpath
expression is as follows:

//*[text()="Home"'].

- Home th Jobs <7 QIA &% Tools <[> Coding Ground

span | 31.2 x 18

'l:} Inspector Console [© Debugger T¢ Network {} Style Editor (D Perd

Run /\\/QX@

$x("//*%[text()="Home"]") % $x("//*[text()="Home"]")

€& » Array [span %]

starts-with

It is used to identify an element whose attribute value begins with a specific text. This
function is normally used for attributes whose value changes on each page load.

Let us see the html of the element Q/A:

37

MPLYEASYLEARMNINIG

w Mtutorialspoint

Selenium Webdriver

fat Home h Jobs < QA fiii— I <[> Coding Ground & UPSC Notes [l Whiteboard [Ch Tutorix =4 Login
[PPTRINE N
D Inspector Console O Debugger T»L Network {} Style Editor O Performance ﬁ Memory B Storage "-[Accessibility ='= Whe
arch HT + .

w
b <svg class="svg-inline--fa fa-home fa-w-18" aria-hidden="true" data-prefix="fa" data-icon="home" role="img" xmlns="http://www.w3.org
[/2088/svg" viewBox="0 @ 576 512" data-fa-i2svg=""»l--</svg>

¢l--<i class="fa fa-home"></i>-->»

whitespace
Home
<fa»
<fdivs
¥ <div class="tp-primary-header mui-top-ga"> »/</div>

target="_blank" title="Questions & Answers - The Best Technical Questions and

b <svg class="svg-inline--fa fa-location-arrolw fa-w-16" aria-hidden="true" data-prefix="fa" data-icon="location-arrow” role="img"
xmlns="http://wew.w3.org/2000/svg" viewBox="0 @ 512 512" data-fa-i2svg=""» = </svg>

¢l--<i class="fa fa-location-arrow"></i>--»
whitespace
Q/A

<fa»

The xpath expression should be as follows:

//a[starts-with(@title, 'Questions &')].

{at Home th Jobs </> Coding Ground & UPSC Notes

{:} Inspector Console [© Debugger TJy Network {} Style Editor m Performance ﬁ Men

> Run /\ A4 Q x @

$x("//a[starts-with(@title, 'Questions &')]") » $x("//a[starts-with(@title, 'Questions &')]")
< »Array [a 1

Click to select the node in the inspector

contains()

It identifies an element whose attribute value contains a sub-text. This function is
normally used for attributes whose value changes on each page load.

The xpath expression is as follows:

//a[contains(@title, 'Questions & Answers')].

38

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

fat Home {th Jobs 7 QA ©i; Tools <f> Coding Ground & UPSC Notes [l Whitebd
a | 35.2 =% 13.6
s_sesane 7N
{3 Inspector Consale [Debugger ‘Nr Network {} Style Editor O Performance EEE Memory E Stol
Run A v Q X W
$x("//a[contains(@title, "Questions & Answers’)]") » $x("//alcontains(@title, 'Questions & Answers')]")

Array [a 1
Click to select the node in the inspector

Let us see the html code of a webelement:

EEIEEC IR EIEEATTATY I

input#gsc-i-id1.gsc-input 663 x 34

ources Network Performance Memory Application Security Lighthouse

:d id="gs_tti50" class="gsib_a

input autocomplete="off" type="text" size="10" class=""gsc-input' name="search” title="search" id="gsc-i-idl" dir="1t
r' spellcheck="false" style="width: 100%; padding: @px; border: none; margin: -0.0625em @px @px; height: 1.25em; back
ground: url("https://www.google.com/cse/static/images/1x/en/branding.png") left center no-repeat rgb(255, 255, 255);
outline: none; == $0

The edit box highlighted in the above image has a name attribute with value search, the
xpath expression should be //input[@name="search']. Let us try to input some text into
this edit box after identifying it.

Code Implementation

The code implementation for identifying multiple elements by Xpath is as follows:

from selenium import webdriver
driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time
driver.implicitly wait(5)
#url launch
driver.get("https://www.tutorialspoint.com/index.htm")
#identify elements with xpath
1 = driver.find_elements_by_ xpath("//input[@name="search']")
#count elements
s = len(l)
#iterate through list
for i in 1:
#obtain text

t = i.send_keys('Tutorialspoint - Selenium')

\'

i.get_attribute('value')
print('Value entered is: ' + v)

#driver quit

39

w Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv
Value entered is: Tutorialspoint - Selenium

Process finished with exit code O

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Tutorialspoint - Selenium gets printed in the console.

40

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver — Explicit and Implicit

Wait

Let us understand what an explicit wait in the Selenium Webdriver is.

Explicit Wait

An explicit wait is applied to instruct the webdriver to wait for a specific condition before
moving to the other steps in the automation script.

Explicit wait is implemented using the WebDriverWait class along with
expected_conditions. The expected_conditions class has a group of pre-built conditions
to be used along with the WebDriverWait class.

Pre-built Conditions

The pre-built conditions which are to be used along with the WebDriverWait class are
given below:

o alert_is_present

e element_selection_state_to_be

e presence_of_all_elements_located

e element_located_to_be_selected

o text _to_be_present_in_element

o text_to_be_present_in_element_value
e frame_to_be_available_and_switch_to it
e element_located _to_be_ selected

e visibility_of element_located

e presence_of_element_located

o title_is

e title_contains

e visibility_of

e staleness_of

e element_to_be_clickable

e invisibility_of_element_located

e element_to_be_ selected

Let us wait for the text - Team @ Tutorials Point which becomes available on clicking the
link - Team on the page.

41

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

. .
@tmﬂalspmnt i Categories ~ & Library X Videos

2\

a

ABOUT US ABOUT

About Tutorialspoint

comke About Careers at Tutorials Point
Careers Currently we are looking for various freelancers authors & trainers having great

mantinnad tarhnnlnniae:

On clicking the Team link, the text Team @ Tutorials Point appears.

About Tutorialspoint

Company Team @ Tutorials Point
Team

WA Ava hiinmabh Af neafanainnala fenmn Almnnant annh Aanvmae Af ladia Adiiaads

Code Implementation

The code implementation for the explicit wait is as follows:

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait

driver = webdriver.Chrome(executable_path="'../drivers/chromedriver')
#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify element

1 = driver.find_element_by link_text('Team')

1l.click()

#texpected condition for explicit wait

w = WebDriverWait(driver, 5)
w.until(EC.presence_of_element_located((By.TAG_NAME, 'h1')))

s = driver.find_element_by_tag name('hl')

#obtain text

t = s.text

42

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

print('Text is: ' + t)
#driver quit

driver.quit()

Output

The output is mentioned below:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/v¢
Text 1s: Team @ Tutorials Point

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the text (obtained from the text method) -
Team @ Tutorials Point gets printed in the console.

Implicit Wait

An implicit wait is applied to instruct the webdriver for polling the DOM (Document
Object Model) for a specific amount of time while making an attempt to identify an
element which is currently unavailable.

The default value of the implicit wait time is 0. Once a wait time is set, it remains
applicable through the entire life of the webdriver object. If an implicit wait is not set and
an element is still not present in DOM, an exception is thrown.

The syntax for the implicit wait is as follows:

driver.implicitly wait(5)

Here, a wait time of five seconds is applied to the webdriver object.
Code Implementation

The code implementation for the implicit wait is as follows:

from selenium import webdriver

#set path of chromedriver.exe

driver = webdriver.Chrome(executable path="'../drivers/chromedriver')
#implicit wait of ©.5s

driver.implicitly wait(@.5)

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")

#identify link with link text

43

w tutorialspoint

Selenium Webdriver

1 = driver.find_element by link_text('FAQ')
#tperform click
l.click()

print('Page navigated after click: + driver.title)
#driver quit

driver.quit()

Output

The output is mentioned below:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/pyt
Page navigated after click: Frequently Asked Questions - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. On clicking on the FAQ link, the webdriver waits for
0.5 seconds and then moves to the next step. Also, the title of the next page(obtained
from the driver.title method) - Frequently Asked Questions - Tutorialspoint gets printed
in the console.

44

w tutorialspoint

7. Selenium Webdrive

r — Pop-ups

A new pop-up window can open on clicking a link or a button. The webdriver by default
has control over the main page, in order to access the elements on the new pop-up, the
webdriver control has to be switched from the main page to the new pop-up window.

Methods

The methods to handle new pop-ups are listed below:

e driver.current_window_handle: To obtain

focus.

the handle id of the window in

e driver.window_handles:To obtain the list of all the opened window handle ids.

e driver.swtich_to.window(<window handle id>):To switch the webdriver

control to an opened window whose handle id is passed as a parameter to the

method.

@ appleid.apple.com

Sign In
Apple ID

Email Address

Password

Keep me signed in on this device.

or

({3 Sign in with Google

C.’ Sign in with Apple

On clicking the Sign in with Apple button, a new pop-

as Sign in with Apple ID Let us try to switch to the
there.

Code Implementation

The code implementation for the pop-ups is as follows:

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Sign in with Apple ID

Use your Apple ID to sign in to Indeed Jobs.

Apple ID

Forgot Apple ID or password? 2

8

In setting up Sign in with Apple, information about your
interactions with Apple and this device may be used by
Apple to help prevent fraud. See how your data is
managed...

up opens having the browser title
new pop-up and access elements

45

Selenium Webdriver

from selenium import webdriver
driver = webdriver.Chrome(executable_path="../drivers/chromedriver')
#implicit wait time
driver.implicitly wait(5)
#url launch
driver.get("https://the-internet.herokuapp.com/windows™)
#identify element
s = driver.find_element_by link_text("Click Here™)
s.click()
#current main window handle
m= driver.current_window_handle
#iterate over all window handles
for h in driver.window_handles:
#tcheck for main window handle

if h I=m:

n=h

#switch to new tab
driver.switch_to.window(n)
print('Page title of new tab: ' + driver.title)
#switch to main window
driver.switch_to.window(m)

print('Page title of main window: + driver.title)
#quit browser

driver.quit()

Output

The output is as follows

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest
Page title of new pop-up: Sign in with Apple ID

Page title of main window: Sign In | Indeed Accounts

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. First the page title of the new pop-up(obtained from
the method title) - Sign in with Apple ID gets printed in the console. Next, after
switching the webdriver control to the main window, its page title - Sign In | Indeed
Accounts get printed in the console.

46

w tutorialspoint

8. Selenium Webdriver — Backward and

Forward Navigation

We can move backward and forward in browser history with the help of the Selenium
webdriver with Python. To navigate a step forward in history the method forward is
used. To navigate a step backward in history the method back is used.

The syntax for backward and forward navigation is as follows:

driver.forward()

driver.back()

Code Implementation

The code implementation for backward and forward navigation is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(e.8)

#url 1 launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#url 2 launch
driver.get("https://www.tutorialspoint.com/online_dev_tools.htm")
#back in history

driver.back()

print('Page navigated after back: + driver.title)
#forward in history
driver.forward()

print('Page navigated after forward: + driver.title)
#driver quit

driver.quit()

Output

The output is as follows

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python

Page navigated after back: About Careers at Tutorials Point - Tutorialspoint
Page navigated after forward: Online Development and Testing Tools

Process finished with exit code 0

47

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. After launching the two URLs, the webdriver
navigates back in the browser history and the title of the previous page(obtained from
the driver.title method) - About Careers at Tutorialspoint - Tutorialspoint gets printed in
the console.

Again, the webdriver navigates forward in the browser history and the title of the
following page(obtained from the driver.title method) - Online Development and Testing
Tools gets printed in the console.

MPLYEASYLEARMNINIG

@j Mtutorialspoint

48

9. Selenium Webdriver — Cookies

Selenium webdriver can handle cookies. We can add a cookie, obtain a cookie with a
particular name, and delete a cookie with the help of various methods in Selenium.

Methods

The methods to handle cookies are listed below:

e add_cookie: Used to add a cookie to the present session.

o get_cookie: Used to get a cookie with a particular name. It yields none, if there
is no cookie available with the given name.

o get_cookies: Used to get all the cookies for the present URL.

o delete_cookie: Used to delete a cookie with a particular name.

o delete_all_cookies: Used to delete all the cookies for the present URL.

Code Implementation

The code implementation for handling cookies is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("https://www.tutorialspoint.com/index.htm")
#add a cookie

¢ ={"name': 'cl', 'value': 'vall'}
driver.add_cookie(c)

#get a cookie

1 = driver.get_cookie('cl')

print('Cookie is: ")

print(1)

#get all cookies

m = driver.get_cookies()

print('Cookies are: ')

print(m)

#tdelete a cookie

driver.delete_cookie('cl")

t#tcheck cookie after deletion

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

49

Selenium Webdriver

1 = driver.get_cookie('cl")
print('Cookie is: ')
print(1l)

#tclose driver

driver.close()

Output

The output is as follows:

', 'httpOnly': False, 'name': 'cl', 'path': '/', 'secure': True, '\ 'vall'}

‘. 'httponly': se, ‘name’': ‘cl', 'path': '/', 'secure': True, ‘value': 'vall'}, {'domain‘: '.tutorialspoint.com', ‘expiry"i|

Cookie is:

None

Process finished with exit code @

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. First, the details of the cookie which is added to the
current session get printed in the console.

Next, the details of all the cookies which are present to the current session get printed in
the console. After the deletion of the cookie c1, we have tried to obtain the details of the
cookie cl. Since it is deleted, None is returned by the get_cookie method.

w tutorialspoint

50

10. Selenium Webdriver — Exceptions

If an error occurs, any of the methods fail or an unexpected error happens, an exception
is thrown. In Python, all the exceptions are obtained from the BaseException class.

Selenium Exceptions

Some of the common Selenium Exceptions are listed below:

¢ ElementNotInteractableException: It is thrown if a webelement is attached to
the DOM, but on trying to access the same webelement a different webelement
gets accessed.

o ElementClickInterceptedException: It is thrown if a click operation on a
webelement could not happen because another webelement covering that
webelement receives the click.

e ElementNotVisibleException: It is thrown if a webelement is attached to the
DOM, but invisible on the page and inaccessible.

¢ ElementNotSelectableException: It is thrown if we make an attempt to select
a webelement which is not selectable.

e ImeActivationFailedException: It is thrown if we fail to activate an IME
engine.

e ErrorInResponseException: It is thrown if there is an issue on the server side.

¢ InsecureCertificateException: It is thrown if a user gets a certificate warning
while navigating an application. It is due to a TLS certificate which is no longer
active and valid.

¢ ImeNotAvailableException: It is thrown if there is no support for the IME
engine.

¢ InvalidCookieDomainException: It is thrown if we try to add a cookie under a
varied domain than the present URL.

¢ InvalidArgumentException: It is thrown if the argument passed to a command
is no longer valid.

¢ InvalidElementStateException: It is thrown if we try to access a webelement
which is not in a valid state.

¢ InvalidCoordinatesException: It is thrown if the coordinates for interactions
are not valid.

e InvalidSessionIldException: It is thrown if the session id is not available in the

group of live sessions. Thus the given session is either non-existent or inactive.

51

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

o InvalidSelectorException: It is thrown if the locator used to identify an

element does not yield a webelement.

¢ MoveTargetOutOfBoundsException: It is thrown if the target given in the

ActionChains method is out of the scope of the document.

¢ InvalidSwitchToTargetException: It is thrown if the frame id/name or the

window handle id to be switched to is incorrect.

e NoSuchAttributeException: It is thrown if an element attribute is not detected.

¢ NoAlertPresentException: It is thrown if we try to switch to an alert which is

non-existent.

¢ NoSuchFrameException: It is thrown if we try to switch to a frame which is

non-existent.

o StaleElementReferenceException: It is thrown if an element reference is

currently stale.

¢ NoSuchWindowException: It is thrown if we try to switch to a window which is

non-existent.

¢ UnexpectedAlertPresentException: It is thrown if an alert

unexpectedly in an automation flow.

¢ UnableToSetCookieException: It is thrown if the webdriver is unsuccessful in

setting a cookie.

¢ UnexpectedTagNameException: It is thrown if a support class has not

received an anticipated webelement.

¢ NoSuchElementException: It is thrown if the selector used is unable to locate a

webelement.

Let us see an example of a code which throws an exception.
Code Implementation

The code implementation for the Selenium Exceptions is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="'../drivers/chromedriver')

#implicit wait time
driver.implicitly wait(5)
#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify element with an incorrect link text value

= driver.find_element_by_link_text('Teams")
l.click()

#driver quit

YEASYLEARMNING

@ tutorialspoint

52

Selenium Webdriver

driver.quit()

Output

The output is given below:

e ST o v e e e T]

PyCharm 2021.1.1 available

Process finished with exit code 1

The output shows the message - Process with exit code 1 meaning that the above
Python code has encountered an error. Also, NoSuchElementException is thrown since
the locator link text is not able to detect the link Teams on the page.

53

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

11. Selenium Webdriver — Action Class

Selenium can perform mouse movements, key press, hovering on an element, drag and
drop actions, and so on with the help of the ActionsChains class. We have to create an
instance of the ActionChains class which shall hold all actions in a queue.

Then the method - perform is invoked which actually performs the tasks in the order in
which they are queued. We have to add the statement from selenium.webdriver import
ActionChains to work with the ActionChains class.

The syntax for ActionChains class is as follows:

#Method 1 - chained pattern

e =driver.find_element_by css_selector(".txt")
a = ActionChains(driver)

a.move_to_element(e).click().perform()

#Method 2 - queued actions one after another

e =driver.find_element_by css_selector(".txt")
a = ActionChains(driver)

a.move_to_element(e)

a.click()

a.perform()

In both the above methods, the actions are performed in sequence in which they are
called, one by one.

Methods

The methods of ActionChains class are listed below:

e click: It is used to click a webelement.

e click_and_hold: It is used to hold down the left mouse button on a webelement.

e double_click: It is used to double click a webelement.

e context_click: It is used to right click a webelement.

e drag_and_drop_by_offset: It is used to first perform pressing the left mouse
on the source element, navigating to the target offset and finally releasing the
mouse.

e drag_and_drop: It is used to first perform pressing the left mouse on the
source element, navigating to the target element and finally releasing the mouse.

o key_up: It is used to release a modifier key.

o key_down: It is used for a keypress without releasing it.

54

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

e move_to_element: It is used to move the mouse to the middle of a
webelement.

¢ move_by_offset: It is used to move the mouse to an offset from the present
mouse position.

e Perform: It is used to execute the queued actions.

¢ move_to_element_by_offset: It is used to move the mouse by an offset of a
particular webelement. The offsets are measured from the left-upper corner of
the webelement.

e Release: It is used to release a held mouse button on a webelement.

e Pause: It is used to stop every input for a particular duration in seconds.

o send_keys: It is used to send keys to the present active element.

e reset_actions: It is used to delete all actions that are held locally and in remote.

Let us click on the link - Privacy Policy using the ActionChains methods:

About Tutorialspoint

Company
Team

Careers

Privacy Policy

Cookies Policy

Code Implementation

The code implementation for ActionChains class is as follows:

from selenium import webdriver
from selenium.webdriver import ActionChains
driver = webdriver.Chrome(executable_path="../drivers/chromedriver")

#implicit wait time

55

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

driver.implicitly wait(5)

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify element

s = driver.find_element_by link_text("Privacy Policy")
#instance of ActionChains

a= ActionChains(driver)

#move to element

a.move_to_element(s)

#click

a.click().perform()

#get page title

print('Page title: ' + driver.title)
#driver quit

driver.close()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bi

Page title: About Privacy Policy at Tutorials Point - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application(obtained from
the driver.title method) - About Privacy Policy at Tutorials Point - Tutorialspoint gets
printed in the console.

56

w tutorialspoint

iPAlISelenium Webdriver — Create a Basic Test

To create a basic test in Selenium with Python, the below steps need to be executed:

Step 1: Identify the browser in which the test has to be executed. As we type webdriver
in the editor, all the available browsers like Chrome, Firefox get displayed. Also, we have
to pass the path of the chromedriver executable file path.

The syntax to identify the browser is as follows:

driver = webdriver.Chrome(executable_path="'<path of chromedriver>")

Step 2: Launch the application URL with the get method.

The syntax for launching the application URL is as follows:

driver.get("https://www.tutorialspoint.com/about/about_careers.htm")

Step 3: Identify webelement with the help of any of the locators like id, class, name,
tagname, link text, partial link text, css or xpath on the page.

The syntax to identify the webelement is as follows:

1 = driver.find_element_by_partial_link_text('Refund")

Step 4: After the element has been located, perform an action on it like inputting a text,
clicking, and so on.

The syntax for performing an action is as follows:

driver.find_element_by partial link_ text('Refund').click()

Step 5: Finish the test by quitting the webdriver session. For example,

driver.quit();

Let us see the html code of a webelement:

57

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

we collect from you or what ir
our policy from time to time, so

o Refund Policy

More Links As a user of www.tutorialspoin
any information with us. This P

a Write for us

® ﬂ Elements Console Sources Network Performance Memory Ap
=3 K = 1 B
v
 == $0
</1li>

The link highlighted in the above image has a tagname - a and the partial link text -
Refund. Let us try to click on this link after identifying it.

Code Implementation

The code implementation to create a basic test is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable path="'../drivers/chromedriver")
#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify link with partial link text

1 = driver.find_element_by_partial_link_text('Refund")

#tperform click

1.click()

print('Page navigated after click: ' + driver.title)

#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python /Usd
Page navigated after click: Return, Refund, & Cancellation Policy - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application (obtained from
the driver.title method) - Return, Refund & Cancellation Policy - Tutorialspoint gets
printed in the cons

58

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

13. Selenium Webdriver — Forms

Selenium webdriver can be used to submit a form. A form in a page is represented by
the <form> tag. It contains sub-elements like the edit box, dropdown, link, and so on.
Also, the form can be submitted with the help of the submit method.

The syntax for forms is as follows:

src = driver.find_element_by css_selector("#draggable")

src.submit()

Let us see the html code of elements within the form tag.

v<form target="_blank" onsubmit="try {return window.confirm("You are submitting information to an external page.\nAre you sure?");} catch
(e) {return false;}"> == 30
v<table cellpadding="@" cellspacing="0" width="100%
v <tbody

» <tr height="40">..</tr
»<tr height="40">..</tr
»<tr height="40">..</tr
»<tr height="40">.</tr
»<tr height="40">.</tr:
»<tr height="40">.</tr
»<tr height="40">.</tr
» <tr height="40">..</tr
»<tr height="40">.</tr
» <tr height="40">..</tr
»<tr height="40">..</tr
/tbody

/table
</form

On submitting a form with the above html code, the below alert message is displayed.

www.tutorialspoint.com says

You are submitting information to an external page.
Are you sure?

Cancel

Code Implementation

The code implementation for submitting a form is as follows:

from selenium import webdriver

from selenium.webdriver.common.alert import Alert

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

59

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

#turl launch

driver.get("https://www.tutorialspoint.com/selenium/selenium_automation_practic
e.htm")

#identify element within form

b = driver.find_element_by name("firstname")
b.send_keys('Tutorialspoint')

e = driver.find_element_by name("lastname")
e.send_keys('Online Studies')

#submit form

e.submit()

instance of Alert class

a = Alert(driver)

get alert text

print(a.text)

t#taccept alert

a.accept()

#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonPr

You are submitting information to an external page.
Are you sure?

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the Alert text - You are submitting information
to an external page.

Are you sure?

The above message gets printed in the console.

60

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

14. Selenium Webdriver — Drag and Drop

Selenium can perform mouse movements, key press, hovering on an element, drag and
drop actions, and so on with the help of the ActionsChains class. The method
drag_and_drop first performs pressing the left mouse on the source element, navigating
to the target element and finally releasing the mouse.

The syntax for drag and drop is as follows:

drag_and_drop(s, t)

Here, s is the source element on which the left mouse button is pressed and t is the
target element. We have to add the statement from selenium.webdriver import
ActionChains to work with the ActionChains class.

Let us perform the drag and drop functionality for the below elements:

Drag me to Dropped!

my target

In the above image, the element with the name - Drag me to my target has to be
dragged and dropped to the element - Dropped!.

Code Implementation

The code implementation for drag and drop is as follows:

from selenium import webdriver

from selenium.webdriver import ActionChains

61

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

driver = webdriver.Chrome(executable_path="../drivers/chromedriver')

#implicit wait time

driver.implicitly wait(5)

driver.maximize_window()

#turl launch

driver.get("https://jqueryui.com/droppable/")

#tswitch to frame

driver.switch_to.frame(0)

#identify source element

src = driver.find_element_by css_selector("#draggable")

#identify target element

trgt = driver.find_element_by css_selector("#droppable")

#tinstance of ActionChains

a= ActionChains(driver)

#drag and drop then perform

a.drag_and_drop(src, trgt)

a.perform()

Output

The output is as follows:

MPLYEASYLEARMNINIG

@j Mtutorialspoint

https://jqueryui.com/droppable/
https://jqueryui.com/droppable/

Selenium Webdriver

& (& @& jqueryui.com/droppable/

Chrome is being controlled by automated test software.

EEr T M w T . -— -rr----

Draggable
Create targets for draggable elements.
Droppable

Resizable

Selectable Dr

Boriabie Drag me to
my target

Widgets

Accordion

After execution, the element with the name - Drag me to my target has been dragged
and dropped to the element - Dropped!.

The frames in an html code are represented by the frames/iframe tag. Selenium can
handle frames by switching the webdriver access from the main page to the frame.

Selenium Webdriver Frames

Methods

The methods to handle frames are listed below:

e driver.switch_to_frame("framename"): framename is the name of the
frame.

e driver.switch_to_frame("framename.0.framel"): Used to access the sub-
frame in a frame by separating the path with dot. Here, it would point to the
frame with name framel which is the first sub-frame of the frame named
framename.

e driver.switch_to_default_content():Used to switch the webdriver access from

a frame to the main page.

Let us see the html code of an element inside a frame.

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

BOTTOM
® O] Elements Console Sources Network
<html:
‘head></head>

v<frameset frameborder="1" rows="50%,50%">

»<frame src="/frame top" scrolling="no" name="frame-top

Performance

v<frame src="/frame bottom" scrolling="no" name="frame-bottom":

v#document

v<html>
<head></head>
eae body>BOTTOM
/body> == $0

</html:

</ frame>

Memo

>.</frame>

The tagname highlighted in the above image is frame and the value of the name

attribute is frame_bottom.
Code Implementation

The code implementation to handle frames is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="'../drivers/chromedriver')

#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("https://the-internet.herokuapp.com/nested_frames")
#switch to frame
driver.switch_to.frame('frame-bottom")
#identify source element

s = driver.find_element_by_tag name("body")
#obtain text

t = s.text

print('Text is: ' + t)

#quit browser

driver.quit()

Output

w tutorialspoint

64

Selenium Webdriver

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/py
Text is: BOTTOM

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the text within the frame (obtained from the
text method) - BOTTOM gets printed in the console.

65

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

15. Selenium Webdriver — Windows

A new pop-up window or a tab can open on clicking a link or a button. The webdriver by
default has control over the main page, in order to access the elements on the new
window, the webdriver control has to be switched from the main page to the new pop-up
window or tab.

Methods

The methods to handle new windows are listed below:

e driver.current_window_handle: To obtain the handle id of the window in
focus.

e driver.window_handles: To obtain the list of all the opened window handle ids.

e driver.swtich_to.window(<window handle id>): To switch the webdriver

control to an opened window whose handle id is passed as a parameter to the

method.

The Internet X New Window

@ the-internet.herokuapp.com

Opening a new window

Click Here

On clicking the Click Here link, a new tab opens having the browser title as New Window.
Let us try to switch to the new tab and access elements in there.

Code Implementation

The code implementation for opening a new window is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable path='../drivers/chromedriver')
#implicit wait time

driver.implicitly wait(5)

#url launch

driver.get("https://the-internet.herokuapp.com/windows")

66

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

#identify element
s = driver.find_element_by link_text("Click Here")
s.click()
#current main window handle
m= driver.current_window_handle
#iterate over all window handles
for h in driver.window_handles:
#tcheck for main window handle

if h 1= m:

n=h

#switch to new tab
driver.switch_to.window(n)

print('Page title of new tab: ' + driver.title)
#switch to main window

driver.switch_to.window(m)

print('Page title of main window: ' + driver.title)
#quit browser

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest

Page title of new tab: New Window
Page title of main window: The Internet

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. First the page title of the new tab(obtained from the
method title) - New Window gets printed in the console. Next, after switching the
webdriver control to the main window, its page title - The Internet gets printed in the
console.

67

EIMPLYEAEBEYLEARHNINTIG

w Mtutorialspoint

iTllSelenium Webdriver — Alerts

Selenium webdriver is capable of handling Alerts. The class
selenium.webdriver.common.alert.Alert(driver) is used to work with Alerts. It has
methods to accept, dismiss, enter and obtain the Alert text.
Methods
The methods under the Alert class are listed below:
e accept(): For accepting an Alert.
e dismiss(): For dismissing an Alert.
o text():For obtaining Alert text.
o send_keys(keysToSend):For entering text in Alert.
Code Implementation
The code implementation for alerts is as follows:
from selenium import webdriver
#import Alert class
from selenium.webdriver.common.alert import Alert
driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time
driver.implicitly wait(©.8)
#url launch
driver.get("https://the-internet.herokuapp.com/javascript_alerts")
#identify element
1 = driver.find_element_by xpath("//*[text()="'Click for JS Prompt']")
1.click()
instance of Alert class
a = Alert(driver)
get alert text
print(a.text)
#input text in Alert
a.send_keys('Tutorialspoint')
#dismiss alert
a.dismiss()
l.click()
#taccept alert

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

68

Selenium Webdriver

a.accept()
#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest

I am a JS prompt

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the Alert text - I am a JS prompt gets printed
in the console.

69

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

17. Selenium Webdriver — Handling Links

Selenium can be used to handle links on a page. A link is represented by the anchor tag.
A link can be identified with the help of the locators like - link text and partial link text.

We can use the link text attribute for an element for its identification and utilize the
method find_element_by_link_text. With this, the first element with the matching value
of the given link text is returned.

The syntax for handling links is as follows:

driver.find_element_by link_ text("value of link text")

We can also use the partial link text attribute for an element for its identification and
utilize the method find_element_by_partial_link_text. With this, the first element with
the matching value of the given partial link text is returned.

For both the locators, if there is no element with the matching value of the partial link
text/link text, NoSuchElementException shall be thrown.

The syntax for using the partial link text is as follows:

driver.find_element_by partial link text("value of partial ink text")

Let us see the html code of a webelement, which is as follows:

we collect from you or what ir
our policy from time to time, so

o Refund Policy

More Links As a user of www.tutorialspoin
any information with us. This P

a Write for us

® @ Elements Console Sources Network Performance Memory Ap
(.71
v
 == $0
</1i>

The link highlighted in the above image has a tagname - a and the partial link text -
Refund. Let us try to click on this link after identifying it.

Code Implementation

The code implementation for handling links is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable path='../drivers/chromedriver')

70

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#tidentify link with partial link text

1 = driver.find_element_by_ partial link_text('Refund')

#tperform click

l.click()

print('Page navigated after click: + driver.title)
#driver quit

driver.quit()

Output

The output is as follows:

[/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python /UsH
Page navigated after click: Return, Refund, & Cancellation Policy - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application(obtained from
the driver.title method) - Return, Refund & Cancellation Policy - Tutorialspoint gets
printed in the console.

Let us now see the html code of another webelement:

g INslArnl

a 139.36x30 Currently we are looking

mentioned technologies:
o Privacy Policy

¢ Accounting/Financt
o Cookies Policy

T fU o Electrical/Electronit
erms of Use

[w dj Elements Console Sources Network Performance Memory
Privacy Policy|== $0

The link highlighted in the above image has a tagname - a and the link text - Privacy
Policy. Let us try to click on this link after identifying it.

Code Implementation

The code implementation for handling link is as follows:

from selenium import webdriver

71

w tutorialspoint

Selenium Webdriver

driver = webdriver.Chrome(executable path='../drivers/chromedriver')
#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify link with link text

1 = driver.find_element_by link_text('Privacy Policy')

#tperform click

l.click()

print('Page navigated after click: ' + driver.title)

#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python /Users
Page navigated after click: About Privacy Policy at Tutorials Point - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application(obtained from
the driver.title method) - About Privacy Policy at Tutorials Point - Tutorialspoint gets
printed in the console.

72

EIMPLYEAEBEYLEARHNINTIG

w Mtutorialspoint

18. Selenium Webdriver — Handling Edit Boxes

Selenium can be used to input text to an edit box. An edit box is represented by the
input tag and its type attribute should have the value as text. It can be identified with
any of the locators like - id, class, name, css, xpath and tagname.

To input a value into an edit box, we have to use the method send_keys.

Let us see the html code of a webelement:

hrowsing the best resource for Online Eo©
input#gsc-i-id1.gsc-input 663 x 34

eNHANCED BY Google

has changed. To apply this change to DevTools, reload. JaCi[eETsRplETA]

Sources Network Performance Memory Application Security Lighthouse

=""gsc—-input">
1ss=""gsc-input-box" id="gsc-iw-id1l">
+ cellspacing="0" cellpadding="0" id="gs_id50" class=""gstl_50 gsc-input" style="width: 100%; pad
px; ">
dy 5
r>
<td id="gs_tti50" class="gsib_a">
<input]autocomplete="off" type="text" size="10" class='"'gsc-input" name="search" title="search
1d="gsc—i-id1" dir="1tr" spellcheck="false" style="width: 100%; padding: O@px; border: none; ma
rgin: -0.0625em Opx @px; height: 1.25em; background: url("https://www.google.com/cse/static/im
ages/1x/en/branding.png") left center no-repeat rgb(255, 255, 255); outline: none;"> == $0
</td>

The edit box highlighted in the above image has a tagname - input. Let us try to input
some text into this edit box after identifying it.

Code Implementation

The code implementation for handling edit box is as follows:

from selenium import webdriver

#set chromedriver.exe path

driver = webdriver.Chrome(executable_path="../drivers/chromedriver')
#url launch

driver.get("https://www.tutorialspoint.com/index.htm")

#identify edit box with tagname

1 = driver.find_element_by_ tag name('input')

#input text

l.send_keys('Selenium Python')

73

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

#obtain value entered
v = l.get_attribute('value')

print('Value entered: + V)
#driver close

driver.close()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python

Value entered: Selenium Python

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value entered within the edit box (obtained
from the get_attribute method) - Selenium Python gets printed in the console.

74

w tutorialspoint

ICRlSelenium Webdriver — Color Support

Selenium has the color conversion support class. We have to add the statement from
selenium.webdriver.support.color import Color to convert colors to rgba/hex format.

Code Implementation

The code implementation for color conversion support is as follows:

from selenium import webdriver

from selenium.webdriver.support.color import Color
#color conversion to rgba format
print(Color.from_string('#00fe37"').rgba)

#tcolor conversion to hex format
print(Color.from_string('rgb(1, 200, 5)').hex)
#color conversion to rgba format

print(Color.from_string('green').rgba)

Output

The output is as follows:
/Users/debomitabhattacharjee/PycharmProjects/pyt
rgha(0, 254, 55, 1)
#01c805

rgha(0, 128, 0, 1)

Process finished with exit code 0

75

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

rFIilISelenium Webdriver — Generating HTVIL Test

Reports in Python

We can generate HTML reports with our Selenium test using the Pytest Testing
Framework. To configure Pytest, we have to run the following command:

pip install pytest.

Once the installation is done, we can run the command to check the Pytest version
installed:

pytest -version

As a Pytest standard, the Python file containing the Pytest should start with test_ or end
with _test. Also, all the test steps should be within a method whose name should start
with test_.

To run a Pytest file, we can open the terminal and move from the current directory to
the directory of the Pytest file that we want to execute. Then, run the command
mentioned below:

py.test -v -s.

Let us look at a project structure following the Pytest Test Framework.

pythonProjectTest test_SeleniumTest():
data
drivers
SeleniumTest
.pytest_cache

o __init__.py

a test1.py
. test_p.py
venv

@ main.py

> |l External Libraries

© Scratches and Consoles

In the above image, it shows that the Pytest file has the name test_p.py and it contains
a test method with the name test_SeleniumTest.

To generate a HTML report for a Selenium test, we have to install a plugin with the
command: pip install pytest-html. To generate the report, we have to move from the
current directory to the directory of the Pytest file that we want to execute. Then run the
command: pytest --html=report.html.

After this command is successfully executed, a new file called the report.html gets
generated within the project.

76

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

pythonProjectTest
data
drivers
SeleniumTest
.pytest_cache
assets
e __init__.py
report.html
@ test1.py
s test_p.py
venv
e Main.py
> llih External Libraries

20 Scratches and Consoles

Right-click on the report.html and select the option Copy Path.

77

@tutnr-ialspnint

Selenium Webdriver

pythonProjectTest
data
drivers
SeleniumTest
| .pytest_cache
| assets
e __init__.py
report.html
% test1.py New

e test_p.py % Cut

venv |—E COpy

' @ main.py Copy Path...
Il External Libraries [1 Paste

Open the path of the file copied in a browser, to get the HTML report.

report.html
Report generated on 31-May-2021 at 23:08:55 by v3.1.1

Environment

Summary
1 tests ran in 0.01 seconds.

(Un)check the boxes to filter the results.
1 passed, 0 failed, 0 errors 0 unexpec ted passes

Results

A Result

Passed

The HTML report gives information of the Environment on which the test is executed. It
also contains the information on test Summary and Results.

78

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

21. Selenium Webdriver — Read/Write data from

Excel

We can read and write data from an excel sheet in Selenium webdriver in Python. An
excel workbook consists of multiple sheets and each sheet consists of cells and columns.

To work with Excel in Python (with extensions .xlsx, .xIsm, and so on) we have to utilise
the OpenPyXL library. To install this package, we have to run the following command:

pip install openpyxl.

Also, we have to add the statement import openpyxl in our code.

artifactory.bosch.com/artifacto /pypi/python-virtual/simple

collected ,
tup. all et-xmlfile
/ installed et-xmlfile-1.0.1 openp

To open an excel workbook, the method is load_workbook and pass the path of the excel
file as a parameter to this method. To identify the active sheet, we have to use the
active method on the workbook object.

To read a cell, the method cell is applied on the active sheet and the row and column
numbers are passed as parameters to this method. Then, the value method is applied on
a particular cell to read values within it.

Let us read the value at the third row and second column having the value D as shown
below in an excel workbook of hame Data.xlsx:

RSl = e e) T (L¥2=]

A B
Col1 Col2
A B
C D

Code Implementation

The code implementation read/write data from Excel to Selenium Webdriver in Python is
as follows:

import openpyxl

#configure workbook path

b = openpyxl.load_workbook("C:\\Data.xlsx")
#get active sheet

sht = b.active

79

w Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

#tget cell address within active sheet

cl = sht.cell (row = 3, column = 2)

#read value with cell

print("Reading value from row-3, col-2: ")

print (cl.value)

Output

The output is as follows:

B Console 2

<terminated > PyDevModule.py [C\Users\ghsbkor\AppDatalLocal\Programs\Python\Python37\python.exe]

heading value from row-3, col-2:
D

To write a cell, the method cell is applied on the active sheet and the row and column
numbers are passed as parameters to this method. Then, the value method is applied on
a particular cell to write on it. Finally, the workbook is to be saved with the method save,
the path of the file to be saved is passed as a parameter to this method.

We shall take an Excel name testdata.xlsx and save it within the data folder within our
project. We shall write the value - Selenium Python in the third row and seventh column.

pythonProjectTest

data
B testdata.xlsx
drivers
SeleniumTest

5 __Init__.py

a test1.py
venv

& main.py

Il External Libraries
o Scratches and Consoles

Code Implementation

The code implementation for working on workbook in Selenium Webdriver is as follows:

80

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

from selenium import webdriver

import openpyxl

#load workbook

b= openpyxl.load_workbook("'../data/testdata.xlsx")
#get active worksheet

sh = b.active

write value in third row, 8th column
sh.cell(row=3, column=8).value = "Selenium Python"
#save workbook

b.save("../data/testdata.xlsx")

#tidentify cell

cl = sh.cell(row=3, column=8)

#read cell value

print("Reading value from row-3, col-8: ")

print(cl.value)

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTes

Reading value from row-3, col-8:
Selenium Python

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the value - Selenium Python is successfully
written on the cell with address - row-3 and column - 8.

81

w tutorialspoint

¥ AliSelenium Webdriver — Handling Checkboxes

We can handle checkboxes with Selenium webdriver. A checkbox is represented by input
tagname in the html code and its type attribute should have the value as checkbox.

Methods
The methods to handle the checkboxes are listed below:
e Click: Used to check a checkbox.
e is_selected:Used to check if a checkbox is checked or not. It returns a boolean

value, true is returned in case a checkbox is checked.

Let us see the html code of a checkbox, which is as follows:

82

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

s S BOXEOS

input 13x13
[l checkbox 1

checkbox 2

Elements Console sources Network Perf

~</head>

class="row">.</div>
class="row">
: tbefore
<a href="https://github.com/tourdedave/the-interne
<div id="content" class="large-12 columns">
<div class="example'>
<h3>Checkboxes</h3>
<form id="checkboxes"'>
<input type="checkbox'>
" checkbox 1"

<input type="checkbox" checked>
" checkbox 2

</form>

Code Implementation

The code implementation for handling checkboxes is as follows:

from selenium import webdriver

@tutorialspoint

83

Selenium Webdriver

driver = webdriver.Chrome(executable path='../drivers/chromedriver')
#implicit wait time
driver.implicitly wait(5)
#url launch
driver.get("https://the-internet.herokuapp.com/checkboxes™)
#tidentify element
1 = driver.find_element_by_xpath("//input[@type="checkbox']")
l.click()
if 1l.is_selected():

print('Checkbox is checked")
else:

print('Checkbox is not checked')
#close driver

driver.close()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/

Checkbox is checked

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the message - Checkbox is checked is printed
since the is_selected method applied on the checkbox returned true value.

84

w tutorialspoint

23. Selenium Webdriver — Executing Tests in

Multiple Browsers

Selenium supports multiple browsers like Chrome, Firefox, Safari, IE, and so on. For
running the tests in a particular browser we should have to download the executable file
for that browser from the below link:

https://www.selenium.dev/downloads/

Once the link is launched, scroll down to the Browsers section. Under this, all the
available browsers which support execution are listed. Click on the documentation link to
download the corresponding executable file.

- Browsers

Firefox

GeckoDriver is implemented and supported by Mozilla, refer to their documentation for supported versions.

Internet Explorer

Only version 11 is supported, and it requires additional configuration.

Safari

SafariDriver is supported directly by Apple, for more information, check their documentation

Opera

OperaDriver is supported by Opera Software, refer to their documentation for supported versions.

Chrome

ChromeDriver is supported by the Chromium project, please refer to their documentation for any compatibility information

Edge

Microsoft is implementing and maintaining the Microsoft Edge WebDriver, please refer to their documentation for any compatibility information

For example, to trigger the tests on Chrome, click on the documentation link. In the next
page, the list of all the versions of chromedriver shall be available.

85

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://www.selenium.dev/downloads/

Selenium Webdriver

All versions available in Downloads

e Latest stable releasq: ChromeDriver 90.0.4430.24
e |[atest beta release:[ChromeDriver 91.0.4472.19

/ ol REPPRGEREGIN . W1 IRl . gty NIy By ety

Click on a link to download the chromedriver.exe file which matches with our local
Chrome browser version. On the following page, we shall be directed to the zip files
available for download for the platforms Windows, Linux, and Mac.

Index of /90.0.4430.24/

Name Last modified Size ETag
a Parent Directory =
chromedriver linux64.zip 2021-03-15 16:49:46 5.53MB ££32297377308392f3e5b44cf282f77a
chromedriver mac64.zip 2021-03-15 16:49:48 7.68MB 01378£44ca91150771859e254809£b66
chromedriver mac64 ml.zip 2021-03-1516:49:50 7.01MB 9cd97b08730a9d395610d051b4aa2c05
chromedriver win32.zip 2021-03-15 16:49:51 5.67MB eeb5e37fc4d4b21337a46576137a2053
notes.txt 2021-03-15 16:49:56 0.00MB a79b03d7895fbbl45c4d3d0a63ba0d4l

Click on a link to download the chromedriver.exe file which matches with our local
operating system. Once the download is done, unzip the file and save it within the

project directory.

For example in our project, we have saved the chromedriver.exe file within the drivers
folder. Then we have to specify the path of this file within the
webdriver.Chrome(executable_path="<path of chromedriver>").

w tutorialspoint

86

Selenium Webdriver

pythonProjectTest
drivers
" Ichromedriver
SeleniumTest
% __Init__.py
o testl.py
venv

e Main.py

Il External Libraries
o Scratches and Consoles

Code Implementation

The code implementation for supporting multiple browsers is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable path="'../drivers/chromedriver')
#implicit wait time

driver.implicitly wait(5)

#url launch

driver.get("https://www.tutorialspoint.com/index.htm")

#get browse name

1 = driver.capabilities['browserName']

print('Browser name: ' + 1)

#driver quit

driver.quit()

Output

The output is as follows:

87

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

test1

/Users/debomitabhattacharjee/PycharmProjects

Browser name: chrome

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the browser in which the test has executed -
chrome gets printed in the console.

Similarly, if we want to execute the test in the Firefox browser (versions greater than
47), we have to use the geckodriver.exe file.

88

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

PZWliSelenium Webdriver — Headless Execution

Selenium supports headless execution. In the Chrome browser, the headless execution
can be implemented with the help of the ChromeOptions class. We have to create an
object of this class and apply the add_arguments method on it. Finally, pass the
parameter --headless to this method.

Let us obtain the title - About Careers at Tutorials Point - Tutorialspoint of the page
launched in a headless mode:

{@" About Careers at Tutorials Poir X <+

About Careers at Tutorials Point -
Tutorialspoint
tutorialspoint.com

utorix < Login % Packages

& Library [X¥Videos </ Q/A [E eBook

Code Implementation

The code implementation for the headless execution is as follows:

from selenium import webdriver

from selenium.webdriver.chrome.options import Options

#object of Options class

c = Options()

#passing headless parameter

c.add_argument("--headless")

#adding headless parameter to webdriver object

driver = webdriver.Chrome(executable_path="../drivers/chromedriver', options=c)
implicit wait time

driver.implicitly wait(5)

url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
print('Page title: ' + driver.title)

driver quit

driver.quit()

89

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

Output

The output is as follows

test1
/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/

Page title: About Careers at Tutorials Point - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application(obtained from
the driver.title method) - About Careers at Tutorials Point - Tutorialspoint gets printed in
the console.

90

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

25. Selenium Webdriver — Wait Support

Selenium provides wait support for implementations of explicit and fluent waits for
synchronization. For this, we have to use the class
selenium.webdriver.support.wait.WebDriverWait.

The syntax for the wait support is as follows:

w = WebDriverWait(driver, 5)

w.until(EC.presence_of_element_located((By.TAG_NAME, 'hl")))

Once we create an object of the WebDriverWait class, we can apply the below methods
on them:

e until: It is used to invoke the method given with the driver as a parameter until
the return value is true.
e until_not: It is used to invoke the method given with the driver as a parameter

until the return value is not true.

Let us wait for the text Team @ Tutorials Point which becomes available on clicking the
link - Team on the page with the help of WebDriverWait methods.

..)
@tgwrialspomt £ Categories ~ & Library [Videos

&

ABOUT US ABOUT

About Tutorialspoint

cotkd About Careers at Tutorials Point
Careers Currently we are looking for various freelancers authors & trainers having great

mantinnad tarhnnlnniae:

On clicking the Team link, the text Team @ Tutorials Point appears.

About Tutorialspoint

Company Team @ Tutorials Point
o Team

WAln mvm hiimabl Af meafanninmala femnma Almnnnt Amnblh Amvimae Af lindia AddiiAnd-

91

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

Selenium Webdriver

Code Implementation

The code implementation for wait support is as follows:

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify element

1 = driver.find_element_by link_text('Team')

1.click()

#texpected condition for explicit wait

w = WebDriverWait(driver, 5)
w.until(EC.presence_of_element_located((By.TAG_NAME, 'h1')))

s = driver.find_element_by_tag_name('h1l")

#obtain text

t = s.text

print('Text is: ' + t)

#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/vs

Text is: Team @ Tutorials Point

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the text (obtained from the text method) -
Team @ Tutorials Point gets printed in the console.

92

w tutorialspoint

26. Selenium Webdriver — Select Support

Selenium can handle static dropdowns with the help of the Select class. A dropdown is
identified with select tagname and its options are represented with the tagname option.
The statement - from selenium.webdriver.support.select import Select should be added
to work with Select class.

v<select id="dropdown">
<option value disabled="disabled" selected="selected">Please select an option</option>
<option value="1">0ption 1</option>
<option value="2">0ption 2</option>
</select>

Methods

The methods under the Select class are listed below:
select_by_visible_text (arg)
It shall select all the options which displayed text matches with the argument.

The syntax for selecting options displaying text matches is as follows:

sel = Select (driver.find_element_by id ("name"))
sel.select_by visible_text ('Visible Text')

select_by_value (arg)

It shall select all the options having a value that matches with the argument.
The syntax for selecting all options having matching value as per the argument is as
follows:

sel = Select (driver.find_element_by_id ("name"))
sel.select_by value ('Value')

select_by_index (arg)

It shall select an option that matches with the argument. The index begins from zero.

The syntax for selecting the option having matching value as per the argument is as
follows:

sel = Select (driver.find_element_by id ("name"))
sel.select_by index (1)

deselect_by_visible_text (arg)

It shall deselect all the options which displayed text matches with the argument.

93

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

The syntax for deselecting all options having matching value as per the argument is as
follows:

sel = Select (driver.find_element_by id ("name"))
sel.deselect_by visible text ('Visible Text')

deselect_by_value (arg)

It shall deselect all the options having a value that matches with the argument.

The syntax for deselecting all options having matching value as per the argument is as
follows:

sel = Select (driver.find_element_by id ("name"))
sel.deselect_by value ('Value')

deselect_by_index(arg)
It shall deselect the option that matches with the argument. The index begins from zero.

The syntax for deselecting an option having matching value as per the argument is as
follows:

sel = Select(driver.find_element_by id ("name"))

sel.deselect_by index(1)

all_selected_options
It shall yield all the options which are selected for a dropdown.
first_selected_option

It shall yield the first selected option for a multi-select dropdown or the currently
selected option in a normal dropdown.

options

It shall yield all the options available under the select tagname.
deselect_all

It shall clear all the selected options in a multi-select dropdown.
Code Implementation

The code implementation for handling static dropdowns with Select class is as follows:

from selenium import webdriver
from selenium.webdriver.support.select import Select
driver = webdriver.Chrome(executable_path='../drivers/chromedriver')

#implicit wait time

EIMPLYEAGSYLEARMNINIG

I&j Mtutorialspoint

94

Selenium Webdriver

driver.implicitly wait(5)

#url launch
driver.get("https://the-internet.herokuapp.com/dropdown™)
#object of Select

s= Select(driver.find_element_by_ id("dropdown"))

#tselect option by value

s.select_by value("1")

Output

The output is as follows:

< C @ the-internet.herokuapp.com/dropdown

Chrome is being controlled by automated test software.

Dropdown List

Option 1

The output shows that the option "Option 1" gets selected in the dropdown.

EIMPLYEAEBEYLEARHNINTIG

w Mtutorialspoint

95

Selenium Webdriver — JavaScript Executor

Selenium can execute JavaScript commands with the help of the execute_script method.
The command to be executed is passed as a parameter to this method. We can perform
browser operations like clicking a link with the help of the JavaScript Executor.

The syntax for executing the Javascript commands is as follows:

b = driver.find_element_by id("txt")

driver.execute_script ("arguments[@].click();",b)

Code Implementation

The code implementation for executing the Javascript commands is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#click with JavaScript Executor

b = driver.find_element_by link_text("Cookies Policy")
driver.execute_script ("arguments[@].click();",b)

print('Page title after click: '+ driver.title)

#driver quit

driver.quit()

Output

The output is as follows

[/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/venv/bin/python /

Page title after click: About Cookies Policy at Tutorials Point - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application after the click
(obtained from the driver.title method) - About Cookies Policy at Tutorials Point -
Tutorialspoint gets printed in the console.

96

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

execute_script

Selenium cannot directly handle scrolling functionality directly. Selenium can execute
JavaScript commands with the help of the method - execute_script. The JavaScript
command to be executed is passed as a parameter to this method.

The syntax for executing the Javascript commands with the help of execute_script
method is as follows:

driver.execute_script("window.scrollTo(@, document.body.scrollHeight);")

The method scrollTo is used to scroll to a location in the browser window. The
scrollHeight is a property of an element. The document.body.scrollHeight yields the
height of the webpage.

Code Implementation

The code implementation for executing the Javascript commands with the help of
execute_script method is as follows is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_ path="'../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch

driver.get("https://www.tutorialspoint.com/index.htm")

#scroll to page bottom

driver.execute_script("window.scrollTo(@, document.body.scrollHeight);")

Output

The output is as follows:

MPLYEASYLEARMNINIG

@j Mtutorialspoint

97

Selenium Webdriver

® ® € RxJS, ggplot2, Python Data Pe X +
&« C @ tutorialspoint.com/index.htm v &
Chrome is being controlled by automated test software. p <
[Selected Reading
A , p()8 e
) (S ¢
Developers Effective Computer Who is Who Technical Multi-Lingua
Best Practices Resume Writing Glossary n Computer Q&A Tutorials

EXTRA LINKS CONTACT US

i TS e ow Address: 4th Floor, Incor9 Building, Kavuri
[¢ App Store <

Madhapur, Hyderabad, Telangana 500081

soogle play g Website:

NEWSLETTER

FOLLOW

Enter email for newslette

The output shows that the web page is scrolled to the bottom of the page.

98

EIMPLYEAEBEYLEARHNINTIG

j' tutorialspoint

Selenium Webdriver — Chrome WebDriver

Options

Selenium Chrome webdriver Options are handled with the «class -
selenium.webdriver.chrome.options.Options.

Methods

Some of the methods of the above mentioned class are listed below:

o add_argument(args): It is used to append arguments to a list.

o add_encoded_extension(ext):It is used to append base 64 encoded string
and the extension data to a list that will be utilised to get it to the ChromeDriver.

o add_experimental_option(n, val): It is used to append an experimental
option which is passed to the Chrome browser.

e add_extension(ext): It is used to append the extension path to a list that will
be utilised to get it to the ChromeDriver.

o set_capability(n, val): It is used to define a capability.

e to_capabilities(n, val): It is used to generate capabilities along with options
and yields a dictionary with all the data.

e arguments:It is used to yield arguments list required for the browser.

e binary_location: It is used to obtain the binary location. If there is no path, an
empty string is returned.

o debugger_address: It is used to yield the remote devtools object.

experimental_options: It is used to yield a dictionary of the Chrome experimental

options.

o extensions: It is used to yield an extensions list which shall be loaded to the
Chrome browser.

o headless:It is used to check if the headless argument is set or not.

Code Implementation

The code implementation for the Selenium Chrome Webdriver options is as follows:

from selenium import webdriver

from selenium.webdriver.chrome.options import Options
#object of Options class

c = Options()

#passing headless parameter

99

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

c.add_argument("--headless")

#adding headless parameter to webdriver object

driver = webdriver.Chrome(executable_path="../drivers/chromedriver', options=c)
implicit wait time

driver.implicitly wait(5)

url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
print('Page title: ' + driver.title)

driver quit

driver.quit()

Output

The output is as follows:

test1

/Users/debomitabhattacharjee/PycharmProjects/pythonProjectTest/

Page title: About Careers at Tutorials Point - Tutorialspoint

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the page title of the application(obtained from
the driver.title method) - About Careers at Tutorials Point - Tutorialspoint gets printed in
the console.

100

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

FERlSelenium Webdriver — Scroll Operations

Selenium cannot directly handle scrolling functionality directly. Selenium can execute
JavaScript commands with the help of the method - execute_script. The JavaScript
command to be executed is passed as a parameter to this method.

The syntax for executing the Javascript commands is as follows:

driver.execute_script("window.scrollTo(@, document.body.scrollHeight);")

The method scrollTo is used to scroll to a location in the browser window. The
scrollHeight is a property of an element. The document.body.scrollHeight yields the
height of the webpage.

Code Implementation

The code implementation for executing the Javascript commands is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch

driver.get("https://www.tutorialspoint.com/index.htm")

#scroll to page bottom

driver.execute_script("window.scrollTo(@, document.body.scrollHeight);")

Output

The output is as follows:

101

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

® ® @ RxJS, ggplot2, Python Data Pc X -+

<« e @& tutorialspoint.com/index.htm

Chrome is being controlled by automated test software.
[[JSelected Reading

4 L

Developers Effective Computer Who is Who

Best Practices Resume Writing Glossary n Computer

EXTRA LINKS

& AppStore

FOLLOW

Selenium Webdriver

CONTACT US

Address: 4th Floor, Incor9 Building, Kavuri

Madhapur, Hyderabad, Telangana 500081

Website:

NEWSLETTER

Enter email fol

The output shows that the web page is scrolled to the bottom of the page.

EIMPLYEAEBEYLEARHNINTIG

j' tutorialspoint

102

30. Selenium Webdriver — Capture Screenshots

We can capture screenshots with the Selenium webdriver using the save_screenshot
method. The path of the screenshot captured is passed as a parameter to this method.

The syntax for capturing the screenshot is as follows:

driver.save_screenshot('logo.png')

Here, an image with the name logo.png should get saved within the project.
Code Implementation

The code implementation for capturing the screenshot is as follows:

from selenium import webdriver

driver = webdriver.Chrome(executable_path='../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch

driver.get("https://www.tutorialspoint.com/index.htm")

#tcapture screenshot - tutorialspoint.png within project
driver.save_screenshot('tutorialspoint.png’)

#close driver

driver.close()

Output

The output is as follows:

Project D = = @ testlpy tutorialspoint.png
pythonProjectTest 2 H ®@ 6 nm 2
drivers

SeleniumTest
e init__.py
@ testl.py

tutorialspoint.png

venv
@ main.py
External Libraries
> fg* < Python 3.8 (venv) >
© Scratches and Consoles

Become Maths and Science Champlon

The output shows that an image tutorialspoint.png gets created within the project. It
contains the captured screenshot.

103

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

31. Selenium Webdriver — Right Click

Selenium can perform mouse movements, key press, hovering on an element, right-
click, drag and drop actions, and so on with the help of the ActionsChains class. The
method context_click performs right-click or context click on an element.

The syntax for using the right click or context click is as follows:

context_click(e=None)

Here, e is the element to be right-clicked. If ‘None’ is mentioned, the click is performed
on the present mouse position. We have to add the statement from selenium.webdriver
import ActionChains to work with the ActionChains class.

Code Implementation

The code implementation for using the right click or context click is as follows:

from selenium import webdriver

from selenium.webdriver import ActionChains

driver = webdriver.Chrome(executable_ path='../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("https://www.tutorialspoint.com/about/about_careers.htm")
#identify element

s = driver.find_element_by xpath("//*[text()="Company']")

#object of ActionChains

a = ActionChains(driver)

#right click then perform

a.context_click(s).perform()

Output

The output is as follows:

104

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

L %3 About Careers at Tutorials Poir X +

@ tutorialspoint.com/about/about

Chrome is being controlled by automated test software.

=t Home () Jobs Tools </> Coding Ground <% Current Affairs & L

tutorialspoint i Categories ~

YLEARNING

ABOUT US

About et o Vs L

Open Link in New Tab
Open Link in New Window

Onen Link in Incoanita Window

T~

After execution, the link with the name - Company has been right-clicked and all the
new options get displayed as a result of the right-click.

105

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

32. Selenium Webdriver — Double Click

Selenium can perform mouse movements, key press, hovering on an element, double
click, drag and drop actions, and so on with the help of the ActionsChains class. The
method double_click performs double-click on an element.

The syntax for using the double click is as follows:

double_click(e=None)

Here, e is the element to be double-clicked. If None is mentioned, the click is performed
on the present mouse position. We have to add the statement from selenium.webdriver
import ActionChains to work with the ActionChains class.

Let us perform the double click on the below element:

Not Secure | uitestpractice.com

Controls Home AjaxCall For |www.uitestpractice.com says

Double Clicked !!

|Click Me!l Double Click Me ! | |

In the above image, it is seen that on double clicking the Double Click me! button, an
alert box gets generated.

Code Implementation

The code implementation for using the double click is as follows:

from selenium import webdriver

from selenium.webdriver import ActionChains

from selenium.webdriver.common.alert import Alert

driver = webdriver.Chrome(executable_path="../drivers/chromedriver")
#implicit wait time

driver.implicitly wait(5)

#url launch
driver.get("http://www.uitestpractice.com/Students/Actions™)
#identify element

s = driver.find_element_by_name("dblClick")

#object of ActionChains

a = ActionChains(driver)

#right click then perform

a.double _click(s).perform()

106

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

Selenium Webdriver

#switch to alert
alrt = Alert(driver)
get alert text
print(alrt.text)
#taccept alert
alrt.accept()
#driver quit

driver.quit()

Output

The output is as follows:

/Users/debomitabhattacharjee/PycharmProjects/pythonProjec
Double Clicked !!

Process finished with exit code 0

The output shows the message - Process with exit code 0 meaning that the above
Python code executed successfully. Also, the Alert text - Double Clicked! gets printed in
the console. The Alert got generated by double clicking the Double Click me! button.

107

w tutorialspoint

EIMPLYEAEBEYLEARHNINTIG

