=
‘e

tutorialspoint

int

//[twitter.com/tutorialspo

https

»

com/tutorialspointindia

www.tutorialspoint.com

//www.facebook

‘3 https

Gradle

About the Tutorial

Gradle is an open source and advanced build automation tool. It builds up on ANT, Maven
and lvy repositories and supports groovy based Domain Specific Language (DSL) over the
XML. In this tutorial, you will learn about different tasks, plugins with regards to gradle.
Moreover, how to build a JAVA project and Groovy project with the help of gradle is also
explained in detail.

Audience

This tutorial is designed for software professionals who are willing to learn Gradle build
tool in simple and easy steps. It will be useful for all those enthusiasts, who are interested
in working on multi-language software development.

Prerequisites

Gradle is groovy based build automation tool. Before you begin this tutorial, we expect
that you have knowledge about JAVA and Groovy programming languages. You can refer
to the tutorials related to JAVA and Groovy on our website for detailed information.

Copyright & Disclaimer

© Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

mailto:contact@tutorialspoint.com

Gradle

Table of Contents

ADOUL the TULOTTAl c..eeiieieeieee ettt sb e bt e et et e b e b e e b e e reeresmnesanes i
YT e 1= o TP PP ST PR PSPPI i
e =T =T o UL =TT PP TP PO PPPPPTRTRN i
COPYFIBNE & DISCIAIME ...neeiiiiteie ettt b e et e st e et e st e e e bt e s be e e bt e sabeeebeesabeesnneesares i
TaBIE OF CONTENTS ittt e e st e st e st e et e e sab e e e bt e sabeesaneesabeesaneenn i
LCT T LTl =T T 1
[1 o VAo B € = | 1
FEATUIES OF Gratle .. .eeueieeiieiieeieette ettt st e sb e et et be e s b e b e b e et e sabesaeesbeesbeenbeenbeenneens 1
WY GroOVY fOF Gratl@? ...oee ettt ettt e e e e e et e e e s tb e e e e sataeeeeassaeessbaeeestaeeeensaaeesssesaeasseeeannses 3
Gradle — INSEAllationccivieiiiiiiiiiinteiie e s 4
Prerequisites t0 INSTAll Gradleuuei it e et e e et e e e e etbe e e e sbaeeeensbaeesessaaeessaeaaans 4
Gradle — BUild SCriPt....ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisses 8
WIFEING BUITA SCIIPL...eiieieeiee ettt ettt sht e e bt e s b e e bt e sab e e s ae e e sabeesaeeesabeesaneesabeenaneens 8
GIOOVY BASICS ..veiiiiiiiiiiitie ettt ettt e e et e e s et e e s et e e e aa bt e e s nne e e s ba e e e e n b e e e s nn e e s nae e e e s raeeseanne 10
FEATUIES OF GIOOVY ...ceiiiiiiiieiitte ettt ettt e s e st e s bt e e bt e e s bt e e bt e e sabe e bt e e sabe e seeesnbeenneeesaneennnes 11
(3 =101 [q oY) o €SP RRTR 12
LT T LT = L. 18
B3 T YL T I T USRS 18
[Tor= Y [T = T TS UPR 20
Adding DePeNndeNnCies 10 TASKSuuiiiiiiiiiiiiiiiiee it setr e e e e e st e e e e e seaataeeeeeesesassraeseeeesennstanneesssannns 21
Fi¥o Lo Il a == T D 1T ol o 4 o o AP 23
YT o] o1 L= I T PSRRI 24
TASK STIUCTUIE ...ttt s s e r e et et e ae e e ae e e n e e r e e r e e reenesanesenennee 25
Gradle — Dependency ManagemeENtccccciiiiiiiiiiiiiiiisssns 26
DeClaring YOUI DEPENUENCIES.uuiiiiieeiieciitieeee e eeciite et e e e e e settre e e e e e e sestataeeeeaeseaastaeseaeesesaastasseaeesesassasneasens 26
Dependency CONFIGUIALIONSoiiiiiiieeeciee et e ettt e ettt e e ettt e e e sttt e e e ette e e e taeeeesabaeeeesseeessseeeaastaseeansaeeessseaans 26

ii

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

10.

11.

Gradle

=T o F= Y I D T=T o 1= o 1= o T =Y 3R 27
0= oo LY L (o] S =LY PP PP P RO P OO TTORPRPON 27
0] o I YT = AN = ot £ US 28
LT T LTl [T T 29
TYPES OF PIUGINS ..ottt ettt e st e et e s e bt e s ab e e sab e e s bt e sabeesaseesabeeeabeesabeeeneenane 29
APPIYING PIUGINS <.ttt ettt et ettt st e sttt st e e s b et e bt e sab et e bt e e bt e e abbe e beeeanaesbeeesaneeneas 29
WIEING CUSTOM PIUGINS ...netiiiiiieiiee ettt ettt st ettt e sae e s bt e sbbe s bt e e ssbe s bt e e sabesabeeenbneeneas 30
Getting INPUL from the BUIldc...eei et e e eee e et e e e sate e e e e ere e e snbeeeesntaeesnnnes 31
Ny =T a Lo E e I CT - To | LI [=] o LSRR 33
Gradle - RUNNING @ BUIIdueiicccccrrcccccccscssssssssssss s s s s s s s s s s s s sssssssssssssssssssssssssssssssssnssnnnes 34
EXECULING MUITIPIE TASKS ..vviiiiiiieeeiiiee ettt e et e ettt e e e tte e e e st e e e e tte e e stbaeeesatseeeessseeesasaaeeastaeeeansaeeessseeaans 34
el [e [TV 1= T SRR 35
CONLINUING The BUIIG ..ot sttt sttt e st e st e e s ateesat e e sabeesaneesabeesaneess 35
Selecting BUild 10 EXECULE ..o.veeieiiiiieeie ettt ettt sttt st e s et e sabeesat e e sabeesaneesabeesaneens 36
Obtaining BUild INFOrM@ationeiiiiiiiieiieeie ettt sttt st et sabe e st e e st e e sate e sareesanee s 36
Gradle—Build @ JAVA ProjeCt.....ccccciiiiiiiiiiiiiiiiiisisiss 41
JaVa DEfAUIt ProJECE LAYOUL ..occeviieeeiiii ettt ettt eette e et e e ettt e e e et e e e etb e e e e abeeeeensaaeesassaaeeeabaeeeenssaeesnsanas 41
INTE TASK EXECUTION .ttt st s e s bt e s b e e e bee s b e e sbeesabeesneesane 42
SPECITYING JAVA VEISION.....viiieiiiie ettt e e et e e e st e e e e tte e e eeabaeeesbaeeeestseesassaaaesntaeseanstaeesansaaeessseaaans 42
Gradle — Build @ GroOVY ProjJecCt.......ccciieeeeeeiiiiiiiiiiiieieciiiieeennesssesseeesnnsssssssssessnnssssssssssssnnnsssssssssssnnnnssnnns 45
(=N CT Ce Yo AV A o (U= T o P UPUR 45
B2 = UL L oY [=Tot fl I 1Yo T U | S 45
(] Lo | TR T o - 46
TESTE DEEECTION .ottt et st 46
LIRS A CT 0T8T o1 o= P UPUPRRPP 46
INCIUAE aNA EXCIUAE TESTS ..eeeniiieiieeiiiieeite ettt ettt st et s bt e bt e s b e e b e e sbbeseneeesmneeneas 47
Gradle — MUulti-Project BUildccoeriieiieeiiiiiiiieeicecccssrrrerceeesssseeeenesssssssesennnsssssssssesennnsssssssessnnnnnnnnnns 49
Structure for MUi-projeCt BUIldc.eiiiiiiie ettt e et e e et e e e s bt e e e esate e e eeasaeaesabreaans 49

iii

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

12,

13.

Gradle

General BUild CONIGUIATIONcccceiii ettt e e st e e e s e e e et e e e snaeeeesstaeeesnsaeeesnaeeeesnsaeenannns 50
Configurations aNd DEPENUENCIES.eeeiiiiieieiieeecieeeesteeeeeire e e sreeeestteeeeestaeesaseeeassteeeesssseesasseeeessseesnnnes 50
Gradle — DepPlOoYMENTccciiiiiiiiiiiciiiisssssssisssssssssssssssssssssssss s ssnssnnes 51
MaVEN-PUDBIISN PIUGIN c....eiiiiiiieee ettt st e st e bt e st e e ae e e sabeenbeeesnneenees 51
Converting from Maven t0 Gradleooiiiiiiiiiieee ettt st st e e e sab e s e sbeesaree s 52
Gradle — Eclipse INteZratioN..........iiiiiiiiveieiiiiiiininirein e ass e e s s s annneees 55

iv

tutorialspoint

EIMPLYEAEGBYLEARNINTIG

1. Gradle — Overview

In this chapter, we will understand why was there a need to develop Gradle, what are its
features and why Groovy programming language was used to develop Gradle.

History of Gradle

Ant and Maven shared considerable success in the JAVA marketplace. Ant was the first
build tool released in 2000 and it was developed on procedural programming idea. Later,
it was improved with an ability to accept plug-ins and dependency management over the
network, with the help on Apache-IVY.

The main drawbacks of Ant include:

e XML is used as a format to write the build scripts.
e Being hierarchical is not good for procedural programming, and

e XML is relatively unmanageable.

Maven was introduced in 2004. It came with lot of improvement than ANT. It was able to
change its structure and XML could be used for writing build specifications. Maven relied
on the conventions and was able to download the dependencies over the network.

The main benefits of Maven include:

e Life cycle of Maven, while following the same life cycle for multiple projects

continuously.

Some problems faced by Maven with regards to dependency management include:

e It does not handle the conflicts between versions of the same library.
e Complex customised build scripts are difficult to write in Maven, as compared to

writing the build scripts in ANT.

Finally, Gradle came into picture in 2012 with some efficient features from both the tools.

Features of Gradle

The list of features that Gradle provides.

Declarative builds and build-by-convention
e Gradle is available with separate Domain Specific Language (DSL) based on Groovy
language.
e It provides the declarative language elements. Those elements also provide build-

by-convention support for Java, Groovy, OSGI, Web and Scala.

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

Language for dependency based programming

The declarative language lies on a top of a general purpose task graph, which can be fully
supported in the build.

Structure your build

Gradle allows you to apply common design principles to your build. It will give you a perfect
structure for build, so that, you can design well-structured and easily maintained,
comprehensible build.

Deep API

By using this API, you can monitor and customise its configuration and execution behavior
to the core.

Gradle scales

Gradle can easily increase the productivity, from simple and single project builds to huge
enterprise multi-project builds.

Multi-project builds

Gradle supports the multi-project builds and partial builds. If you build a subproject, Gradle
takes care of building all the subprojects, that the subproject depends on.

Different ways to manage your builds

Gradle supports different strategies to manage your dependencies.

Gradle is the first build integration tool

Gradle is fully supported for your ANT tasks, Maven and Ivy repository infrastructure for
publishing and retrieving dependencies. It also provides a converter for turning a Maven
pom.xml to Gradle script.

Ease of migration

Gradle can easily adapt to any structure. Therefore, you can always develop your Gradle
build in the same branch, where you can build live script.

Gradle Wrapper

Gradle Wrapper allows you to execute the Gradle builds on machines, where Gradle is not
installed. This is useful for continuous integration of servers.

Free open source

Gradle is an open source project, and licensed under the Apache Software License (ASL).

Groovy

Gradle's build script are written in Groovy programming language. The whole design of
Gradle is oriented towards being used as a language and not as a rigid framework. Groovy

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

allows you to write your own script with some abstractions. The whole Gradle API is fully
designed in Groovy language.

Why Groovy for Gradle?

The complete Gradle API is designed using Groovy language. This is an advantage of an
internal DSL over XML. Gradle is a general purpose build tool and its main focus is Java
projects.

In such projects, the team members will be very familiar with Java and it is better that a
build should be as transparent as possible to all the team members.

Languages like Python, Groovy or Ruby are better for build framework. The reason for
choosing Groovy is, because, it offers by far the greatest transparency for people using
Java. The base syntax of Groovy is same as Java and Groovy provides much more benefits
for its users.

tutorialspoint

EIMPLYEAGSY LEARMNINIG

3]

2. Gradle — Installation

Gradle is a build tool based on java. There are some prerequisites that are required to be
installed before installing the Gradle frame work.

Prerequisites to install Gradle

JDK and Groovy are the prerequisites for Gradle installation.

Gradle requires JDK version 6 or later to be installed in your system. It uses the JDK
libraries which are installed and sets to the JAVA_HOME environmental variable.

Gradle carries its own Groovy library, therefore, we do no need to install Groovy explicitly.
If it is installed, then, that is ignored by Gradle.

The steps to install Gradle in your system are explained below.

Step 1 - Verify JAVA Installation

First of all, you need to have Java Software Development Kit (SDK) installed on your
system. To verify this, execute Java -version command in any of the platform you are
working on.

In Windows

Execute the following command to verify Java installation. We have installed JDK 1.8 in
the system.

C:\> java -version

Output

The output is as follows:

java version "1.8.0_66"
Java(TM) SE Runtime Environment (build 1.8.0_66-b18)
Java HotSpot(TM) 64-Bit Server VM (build 25.66-b18, mixed mode)

In Linux

Execute the following command to verify Java installation. We have installed JDK 1.8 in
the system.

$ java - version

Output

The output is mentioned below:

java version "1.8.0_66"

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

Java(TM) SE Runtime Environment (build 1.8.0_66-b18)
Java HotSpot(TM) 64-Bit Server VM (build 25.66-b18, mixed mode)

We assume the readers of this tutorial have Java SDK version 1.8.0_66 installed on their
system.

Step 2 - Download Gradle Build File

Download the latest version of Gradle from the link available at https://gradle.org/install/.
In the reference page, click on the Complete Distribution link. This step is common for
any platform. For this, you will get the complete distribution file into your Downloads
folder.

Step 3 — Set Up Environment for Gradle

Setting up environment means, we have to extract the distribution file and copy the library
files into proper location. Set up GRADLE_HOME and PATH environmental variables.
This step is platform dependent.

In Windows

Extract the downloaded zip file named gradle-2.11-all.zip and copy the distribution files
from Downloads\gradle-2.11\ to C:\gradle\ location.

After that, add the C:\gradle and C:\gradle\bin directories to
the GRADLE_HOME and PATH system variables.

Follow the given instructions, right click on my computers -> click on properties ->
advanced system settings -> click on environmental variables.

There, you will find a dialog box for creating and editing the system variables.
Click on new button for creating GRADLE_HOME variable (follow the left side screenshot).
Click on Edit for editing the existing Path system variable (follow the right side screenshot).

Follow the screenshots given below:

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

System Properties System Properties
Computer Name | Hardware | Advenced | System Protection | Remcte Computer Name | Hardware | Advanced | System Protection | Remote
Environment Variables Environment Varnables

System variables System varables
|

Variable Vaks o Variable value o
ComSpec C:Windows \system32\omd. exe ORIENTDE_HOME E:\work\22- Crientcb'orientdb-commuri...
FP_NO_HOST_C... NO o5 Vindows_NT
GRADLE_HOME E:'ywork|22- Orientdb\gradie-2. 11 Path C:\orackexe'\app\orade \product\11.2.04, ..
JAVA_HOME C:\Program Fles\Davaljdk1,7.0_60 v PATHEXT .COM; BE; BAT;.CMD;. VES; VBE; JS;.... VY

New... Edt... Delate New,.. Edit.., Delete

oK Cancel oK Cancel
In Linux

Extract the downloaded zip file named gradle-2.11-all.zip and then, you will find an
extracted file named gradle-2.11.

You can use the following to move the distribution files from Downloads/gradle-
2.11/ to /opt/gradle/ location. Execute this operation from the Downloads directory.

$ sudo mv gradle-2.11 /opt/gradle

Edit the ~/.bashrc file and paste the following content to it and save it.

export ORIENT_HOME = /opt/gradle
export PATH = $PATH:

Execute the following command to execute ~/.bashrc file.

$ source ~/.bashrc

Step 4: Verify the Gradle installation

In windows

You can execute the following command in command prompt.

C:\> gradle -v

Output

You will find the Gradle version.

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

Gradle 2.11

Build time: 2016-02-08 07:59:16 UTC
Build number: none
Revision: 584dblc7c90bddldeld1c4c51271c665bfcbad78

Groovy: 2.4.4

Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013
JUM: 1.7.0_60 (Oracle Corporation 24.60-be9)
0S: Windows 8.1 6.3 amd64

In Linux

You can execute the following command in terminal.

$ gradle -v

Output

You will find the Gradle version.

Build time: 2016-02-08 07:59:16 UTC
Build number: none

Revision: 584dblc7c90bddldeldlc4c51271c665bfcba978

Groovy: 2.4.4

Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013
JUM: 1.7.0_60 (Oracle Corporation 24.60-b@9)

0S: Linux 3.13.0-74-generic amd64

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

3. Gradle — Build Script

Gradle builds a script file for handling two things; one is projects and other is tasks.
Every Gradle build represents one or more projects.

A project represents a library JAR or a web application or it might represent a ZIP that is
assembled from the JARs produced by other projects. In simple words, a project is made
up of different tasks.

A task means a piece of work, which a build performs. A task might be compiling some
classes, creating a JAR, generating Javadoc, or publishing some archives to a repository.

Gradle uses Groovy language for writing scripts.

Writing Build Script

Gradle provides a Domain Specific Language (DSL), for writing builds. The Groovy
language is used, in order to, make it easier to describe a build. Each build script of Gradle
is encoded using UTF-8, saved offline and is named as build.gradle.

build.gradle

We describe about the tasks and projects by using a Groovy script. You can run a Gradle
build using the Gradle command, which looks for a file called build.gradle.

Take a look at the following example, which represents a small script that
prints tutorialspoint.

Copy and save the following script into a file named build.gradle. This build script defines
a task name hello, which is used to print tutorialspoint string.

task hello {
doLast {

println 'tutorialspoint’

}

Execute the following command in the command prompt. It executes the above script. You
should execute this, where the build.gradle file is stored.

C:\> gradle -q hello

Output

You will see the following output:

tutorialspoint

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

If you think, task works similar to ANT’s target, then that is correct. Gradle task is
equivalent to ANT target.

You can simplify this hello task by specifying a shortcut (represents a symbol <<) to
the doLast statement. If you add this shortcut to the above task hello, it will look like the
following script.

task hello << {

println 'tutorialspoint’

}

Now, you can execute the above script using gradle —q hello command.

The Grade script mainly uses two real Objects, one is Project Object and the other is Script
Object.

¢ Project Object — Each script describes about one or multiple projects. While in
the execution, this scripts configures the Project Object. You can execute some
methods and use property in your build script, which are delegated to the Project
Object.

¢ Script Object — Gradle takes script code into classes, which implements Script
Interface and then, it is executed. This means that all the properties and methods

declared by the script interface are available in your script.

The following table defines the list of standard project properties. All these properties
are available in your build script.

Sr. No. Name Type Default Value
1 project Project The Project instance.
2 name String The name of the project directory.
3 path String The absolute path of the project.
4 description String A description for the project.
5 projectDir File The directory containing the build script.
6 buildDir File projectDir/build.
7 group Object Unspecified.
8 version Object Unspecified.

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

9 ant AntBuilder An AntBuilder instance.

Groovy Basics

Gradle build scripts use the full length Groovy API.

As a startup, take a look at the following examples.

Example 1

This example explains about converting a string to upper case.

Copy and save the code which is given below, into build.gradle file.

task upper << {
String expString = 'TUTORIALS point’
println "Original: " + expString

println "Upper case: + expString.toUpperCase()

}

Execute the following command in the command prompt. It executes the script mentioned
above. You should execute this, where the build.gradle file is stored.

C:\> gradle -q upper

Output

When you run the code, you will see the following output:

Original: TUTORIALS point
Upper case: TUTORIALS POINT

Example 2

The following example explains about printing the value of an implicit parameter ($it) for
four times.

Copy and save the following code, into build.gradle file.

task count << {
4.times {

print "$it "

}

Execute the following command in the command prompt. It executes the script stated
above. You should execute this, where the build.gradle file is stored.

10

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

$ gradle -q count

Output

This produces the following output:

0123

Features of Groovy

Groovy language provides plenty of features. Some important features are discussed
below:

Groovy JDK Methods

Groovy adds a lot of useful methods to the standard Java classes. For example, Iterable
API from JDK implements an each() method, which iterates over the elements of the
Iterable Interface.

Copy and save the following code into build.gradle file.

task groovylDK << {
String myName = "Marc";
myName.each() {
println "${it}"
}s
}

Execute the following command in the command prompt. It executes the above given
script. You should execute this, where the build.gradle file stores.

C:\> gradle -q groovyJDK

Output

When you execute the above code, you should see the following output:

M

Property Accessors

You can automatically access appropriate getter and setter methods of a particular
property by specifying its reference.

The following snippet defines the syntaxes of getter and setter methods of a
property buildDir.

11

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

// Using a getter method
println project.buildDir
println getProject().getBuildDir()

// Using a setter method
project.buildDir = 'target'
getProject().setBuildDir('target"')

Optional Parentheses on Method Calls

Groovy contains a special feature in methods calling, which is that the parentheses are
optional for method calling. This feature applies to Gradle scripting as well.

Take a look at the following syntax which defines a method
calling systemProperty of test object.

test.systemProperty 'some.prop', 'value'

test.systemProperty('some.prop', 'value')

Closure as the Last Parameter

Gradle DSL uses closures in many places, where the last parameter of a method is a
closure. You can place the closure after the method call.

The following snippet defines that the syntaxes Closures use as repositories() method
parameters.

repositories {

println "in a closure"
}
repositories() {

println "in a closure"

}

repositories({ println "in a closure" })

Default Imports

Gradle automatically adds a set of import statements to the Gradle scripts. The following
list shows the default import packages to the Gradle script.

The default import packages to the Gradle script are listed below:

import org.gradle.*
import org.gradle.api.*

import org.gradle.api.artifacts.*

12

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

import org.gradle.api.artifacts.cache.*
import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.ivy.*
import org.gradle.api.artifacts.maven.*
import org.gradle.api.artifacts.query.*
import org.gradle.api.artifacts.repositories.*
import org.gradle.api.artifacts.result.*
import org.gradle.api.component.*

import org.gradle.api.credentials.*

import org.gradle.api.distribution.*

import org.gradle.api.distribution.plugins.*
import org.gradle.api.dsl.*

import org.gradle.api.execution.*

import org.gradle.api.file.*

import org.gradle.api.initialization.*
import org.gradle.api.initialization.dsl.*
import org.gradle.api.invocation.*

import org.gradle.api.java.archives.*
import org.gradle.api.logging.*

import org.gradle.api.plugins.*

import org.gradle.api.plugins.announce.*
import org.gradle.api.plugins.antlr.*
import org.gradle.api.plugins.buildcomparison.gradle.*
import org.gradle.api.plugins.jetty.*
import org.gradle.api.plugins.osgi.*

import org.gradle.api.plugins.quality.*
import org.gradle.api.plugins.scala.*
import org.gradle.api.plugins.sonar.*
import org.gradle.api.plugins.sonar.model.*
import org.gradle.api.publish.*

import org.gradle.api.publish.ivy.*

import org.gradle.api.publish.ivy.plugins.*
import org.gradle.api.publish.ivy.tasks.*

import org.gradle.api.publish.maven.*

import org.gradle.api.publish.maven.plugins.*

13

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

import org.gradle.api.publish.maven.tasks.*
import org.gradle.api.publish.plugins.*
import org.gradle.api.reporting.*

import org.gradle.api.reporting.components.*
import org.gradle.api.reporting.dependencies.*
import org.gradle.api.reporting.model.*
import org.gradle.api.reporting.plugins.*
import org.gradle.api.resources.*

import org.gradle.api.specs.*

import org.gradle.api.tasks.*

import org.gradle.api.tasks.ant.*

import org.gradle.api.tasks.application.*
import org.gradle.api.tasks.bundling.*
import org.gradle.api.tasks.compile.*

import org.gradle.api.tasks.diagnostics.*
import org.gradle.api.tasks.incremental.*
import org.gradle.api.tasks.javadoc.*

import org.gradle.api.tasks.scala.*

import org.gradle.api.tasks.testing.*

import org.gradle.api.tasks.testing.junit.*
import org.gradle.api.tasks.testing.testng.*
import org.gradle.api.tasks.util.*

import org.gradle.api.tasks.wrapper.*

import org.gradle.authentication.*

import org.gradle.authentication.http.*
import org.gradle.buildinit.plugins.*

import org.gradle.buildinit.tasks.*

import org.gradle.external.javadoc.*

import org.gradle.ide.cdt.*

import org.gradle.ide.cdt.tasks.*

import org.gradle.ide.visualstudio.*

import org.gradle.ide.visualstudio.plugins.*
import org.gradle.ide.visualstudio.tasks.*

import org.gradle.ivy.*

import org.gradle.jvm.*

import org.gradle.jvm.application.scripts.*

14

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

import org.gradle.jvm.application.tasks.*
import org.gradle.jvm.platform.*

import org.gradle.jvm.plugins.*

import org.gradle.jvm.tasks.*

import org.gradle.jvm.tasks.api.*

import org.gradle.jvm.test.*

import org.gradle.jvm.toolchain.*

import org.gradle.language.assembler.*
import org.gradle.language.assembler.plugins.*
import org.gradle.language.assembler.tasks.*
import org.gradle.language.base.*

import org.gradle.language.base.artifact.*
import org.gradle.language.base.plugins.*
import org.gradle.language.base.sources.*
import org.gradle.language.c.*

import org.gradle.language.c.plugins.*
import org.gradle.language.c.tasks.*

import org.gradle.language.coffeescript.*
import org.gradle.language.cpp.*

import org.gradle.language.cpp.plugins.*
import org.gradle.language.cpp.tasks.*
import org.gradle.language.java.*

import org.gradle.language.java.artifact.*
import org.gradle.language.java.plugins.*
import org.gradle.language.java.tasks.*
import org.gradle.language.javascript.*
import org.gradle.language.jvm.*

import org.gradle.language.jvm.plugins.*
import org.gradle.language.jvm.tasks.*
import org.gradle.language.nativeplatform.*
import org.gradle.language.nativeplatform.tasks.*
import org.gradle.language.objectivec.*

import org.gradle.language.objectivec.plugins.*

import org.gradle.language.objectivec.tasks.*
import org.gradle.language.objectivecpp.*

import org.gradle.language.objectivecpp.plugins.*

15

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import

import
import

import

org

org.
org.
org.
org.

org.

org

org.
org.
org.
org.

org.

org

org

org.
org.
org.
org.

org.

org

org.
org.
org.
org.

org.

org

org.
org.
org.
org.

org.

org

org

org.
org.

org.

.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.

gradle

gradle.
gradle.
gradle.
gradle.
.gradle.
.gradle.

gradle.
gradle.
gradle.

language.object
language.rc.*
language.rc.plu
language.rc.tas
language.routes
language.scala.
language.scala.
language.scala.
language.scala.
language.twirl.
maven. *

model . *
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.

nativeplatform.

.platform.base.*

platform.base.b
platform.base.c
platform.base.p
platform.base.t
play.*

play.distributi

play.platform.*
play.plugins.*
play.tasks.*

ivecpp.tasks.*

gins.*
ks.*

.*

*
plugins.*
tasks.*

toolchain.*

*

*

platform.*

plugins.*

tasks.*

test.*

test.cunit.*
test.cunit.plugins.*
test.cunit.tasks.*
test.googletest.*
test.googletest.plugins.*
test.plugins.*
test.tasks.*
toolchain.*

toolchain.plugins.*

inary
omponent.*
lugins.*

est.*

on.*

¥

=

tutorialspoint

PLYEAGSYLEARMNINIG

16

Gradle

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import

org

org.
org.
org.
org.

org.

org

org.
org.
org.
org.

org.

org

org

org.
org.
org.
org.

org.

org

org.
org.
org.
org.

org.

org

org.
org.

org.

.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.

gradle

gradle.
gradle.

play.toolchain.*

plugin.use.*

plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.

process.

ear.*

ear.descriptor.*

ide.api.*

ide.eclipse.*

ide.idea.*
javascript.base.*
javascript.coffeescript.*
javascript.envjs.*
javascript.envjs.browser.*
javascript.envjs.http.*
javascript.envjs.http.simple.*
javascript.jshint.*
javascript.rhino.*
javascript.rhino.worker.*
signing.*
signing.signatory.*
signing.signatory.pgp.*
signing.type.*
signing.type.pgp.*

*

sonar.runner.*

sonar.runner.plugins.*

sonar.runner.tasks.*

testing.jacoco.plugins.*

testkit.

util.*

.testing.jacoco.tasks.*

runner.*

¥

=

tutorialspoint

PLYEAGSYLEARMNINIG

17

4. Gradle — Tasks

Gradle build script describes about one or more Projects. Each project is made up of
different tasks and a task is a piece of work which a build performs.

The task might be compiling some classes, storing class files into separate target folder,
creating JAR, generating Javadoc, or publishing some achieves to the repositories.

This chapter explains about what is task and how to generate and execute a task.

Defining Tasks

Task is a keyword, which is used to define a task into build script.

Take a look into the following example, which represents a task named hello that
prints tutorialspoint. Copy and save the following script into a file named build.gradle.

This build script defines a task name hello, which is used to print tutorialspoint string.

task hello {
doLast {

println 'tutorialspoint’

}

Execute the following command in the command prompt. It executes the above script. You
should execute this, where the build.gradle file is stored.

C:\> gradle -q hello

Output

Given below is the output of the code:

tutorialspoint

You can simplify this hello task by specifying a shortcut (represents a symbol <<) to
the doLast statement. If you add this shortcut to the above task hello, it will look like the
following script.

task hello << {

println 'tutorialspoint’

}

You can execute the above script using gradle —q hello command.

Here are some variations in defining a task, take a look at it.

18

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

The following example defines a task hello.

Copy and save the following code into build.gradle file.

task (hello) << {

println "tutorialspoint”

}

Execute the following command in the command prompt. It executes the script given
above. You should execute this, where the build.gradle file stores.

C:\> gradle -q hello

Output

The output is shown below:

tutorialspoint

You can also use strings for the task names. Take a look at the same hello example.
Here, we will use String as task.

Copy and save the following code into build.gradle file.

task('hello') << {

println "tutorialspoint”

}

Execute the following command in the command prompt. It executes the script which is
mentioned above. You should execute this, where the build.gradle file stores.

C:\> gradle -q hello

Output

When you execute the above code, you should see the following output:

tutorialspoint

You can also use an alternative syntax for defining a task. That is, using create() method
to define a task. Take a look into the same hello example which is given below.

Copy and save the below given code into build.gradle file.

tasks.create(name: 'hello') << {

println "tutorialspoint”

}

Execute the following command in the command prompt. It executes the script stated
above. You should execute this, where the build.gradle file stores.

19

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

C:\> gradle -q hello

Output

Upon execution, you will receive the following output:

tutorialspoint

Locating Tasks

If you want to locate tasks that you have defined in the build file, then, you have to use
the respective standard project properties. That means, each task is available as a
property of the project, in which, the task name is used as the property name.

Take a look into the following code that accesses the tasks as properties.

Copy and save the below given code into build.gradle file.

task hello

println hello.name

println project.hello.name

Execute the following command in the command prompt. It executes the script given
above. You should execute this, where the build.gradle file stores.

C:\> gradle -q hello

Output

The output is mentioned below:

hello
hello

You can also use all the properties through the tasks collection.

Copy and save the following code into build.gradle file.

task hello

println tasks.hello.name

println tasks['hello’'].name

Execute the following command in the command prompt. It executes the script which is
mentioned above. You should execute this, where the build.gradle file stores.

C:\> gradle -q hello

20

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

Output

This produces the following output:

hello
hello

You can also access the task's path by using the tasks. For this, you can call the
getByPath() method with a task name, or a relative path, or an absolute path.

Copy and save the below given code into build.gradle file.

project(':projectA') {
task hello

}
task hello

println tasks.getByPath('hello').path
println tasks.getByPath(':hello').path
println tasks.getByPath('projectA:hello').path

println tasks.getByPath(':projectA:hello').path

Execute the following command in the command prompt. It executes the script which is
given above. You should execute this, where the build.gradle file stores.

C:\> gradle -q hello

Output

The output is stated below:

:hello
:hello
:projectA:hello
:projectA:hello

Adding Dependencies to Tasks

You can make a task dependent on another task and that means, when one task is done
then only other task will begin.

Each task is differentiated with the task name. The collection of task names is referred by
its tasks collection. To refer to a task in another project, you should use path of the project
as a prefix to the respective task name.

The following example adds a dependency from taskX to taskY.

Copy and save the below given code into build.gradle file. Take a look into the following
code.

¥

21

tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

task taskX << {
println 'taskX'

}

task taskY(dependsOn: 'taskX') << {
println "taskY"

}

Execute the following command in the command prompt. It executes the script stated
above. You should execute this, where the build.gradle file stores.

C:\> gradle -q tasky

Output

The output is given herewith:

taskX
tasky

The above example is adding dependency on task by using its names. There is another
way to achieve task dependency which is, to define the dependency using a Task object.

Let us take the same example of taskY being dependent on taskX, but here, we are using
task objects instead of task reference names.

Copy and save the following code into build.gradle file.

task taskY << {
println 'taskY'’

}

task taskX << {
println 'taskX'

}
taskY.dependsOn taskX

Execute the following command in the command prompt. You should execute this, where
the build.gradle file is stored.

C:\> gradle -q taskyY

Output

The output is given below:

taskX
tasky

The above example is adding dependency on task by using its names.

3]

22

tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

There is another way to achieve task dependency which is, to define dependency using a
Task object.

Here, we take the same example that taskY is dependent on taskX but, we are using
task objects instead of task references names.

Copy and save the below given code into build.gradle file. Take a look into the following
code.

task taskX << {
println 'taskX'
}
taskX.dependsOn {
tasks.findAll {
task -» task.name.startsWith('lib")

}
task 1libl << {

println '1libl’

}

task 1lib2 << {
println '1lib2°’

}

task notALib << {
println 'notALib'’

}

Execute the following command in the command prompt. It executes the above given
script. You should execute this, where the build.gradle file stores.

C:\> gradle -q taskX

Output

The output is cited below:

lib1
1ib2
taskX

Adding a Description

You can add a description to your task. This description is displayed when you execute
the Gradle tasks and this is possible by using, the description keyword.

23

tutorialspoint

EIMPLYEAGSY LEARMNINIG

3]

Gradle

Copy and save the following code into build.gradle file. Take a look into the following
code.

task copy(type: Copy) {
description 'Copies the resource directory to the target directory.’
from 'resources’
into 'target'
include(" **/* txt', "**/*.xml', "**/* properties’')
println("description applied")

}

Execute the following command in the command prompt. You should execute this, where
the build.gradle file is stored.

C:\> gradle -q copy

If the command is executed successfully, you will get the following output.

description applied

Skipping Tasks

Skipping tasks can be done by passing a predicate closure. This is possible, only if, the
method of a task or a closure throwing a StopExecutionException, before the actual
work of a task, is executed.

Copy and save the following code into build.gradle file.

task eclipse << {

println 'Hello Eclipse’

// #1st approach - closure returning true, if the task should be executed,
false if not.

eclipse.onlyIf {
project.hasProperty('usingEclipse’)

// #2nd approach - alternatively throw an StopExecutionException() like this
eclipse.doFirst {
if(lusingEclipse) {

throw new StopExecutionException()

24

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

}

Execute the following command in the command prompt. You should execute this, where
the build.gradle file is stored.

C:\> gradle -q eclipse

Task Structure

Gradle has different phases, when it comes to working with the tasks. First of all, there is
a configuration phase, where the code, which is specified directly in a task's closure, is
executed. The configuration block is executed for every available task and not only, for
those tasks, which are later actually executed.

After the configuration phase, the execution phase runs the code inside
the doFirst or doLast closures of those tasks, which are actually executed.

25

tutorialspoint

EIMPLYEAGSY LEARMNINIG

3]

5. Gradle — Dependency Management

Gradle build script defines a process to build projects; each project contains some
dependencies and some publications. Dependencies refer to the things that supports in
building your project, such as required JAR file from other projects and external JARs like
JDBC JAR or Eh-cache JAR in the class path.

Publications means the outcomes of the project, such as test class files, build files and war
files.

All the projects are not self-contained. They need files which are built by the other projects
to compile and test the source files. For example, in order to use Hibernate in the project,
you need to include some Hibernate JARs in the classpath. Gradle uses some special script
to define the dependencies, which needs to be downloaded.

Gradle handles building and publishing the outcomes. Publishing is based on the task that
you define. It might want to copy the files to local directory, or upload them to a remote
Maven or lvy repository or you might use the files from another project in the same muilti-
project build. We can call the process of publishing a task as publication.

Declaring Your Dependencies

Dependency configuration defines a set of dependencies. You can use this feature to
declare external dependencies, which you want to download from the web. This defines
different standers such as follows.

apply plugin: 'java'

repositories {

mavenCentral()

dependencies {

compile group: ‘org.hibernate', name: 'hibernate-core', version:
'3.6.7.Final’

testCompile group: 'junit', name: 'junit', version: '4.+'

Dependency Configurations

Dependency configuration defines a set of dependencies. You can use this feature to
declare external dependencies, which you want to download from the web. This defines
the following different standard configurations.

26

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

¢ Compile — The dependencies required to compile the production source of the
project.

¢ Runtime — The dependencies required by the production classes at runtime. By
default, it also includes the compile time dependencies.

¢ Test Compile — The dependencies required to compile the test source of the
project. By default, it includes compiled production classes and the compile time
dependencies.

e Test Runtime — The dependencies required to run the tests. By default, it includes

runtime and test compile dependencies.

External Dependencies

External dependencies are one of the type of dependencies. This is a dependency on some
files built outside on the current build, and stored in a repository of some kind, such as
Maven central, or a corporate Maven or Ivy repository, or a directory I which is the local
file system.

The following code snippet is to define the external dependency. Use this code
in build.gradle file.

dependencies {

compile group: ‘'org.hibernate', name: 'hibernate-core', version:
'3.6.7.Final"’

}

An external dependency is declaring the external dependencies and the shortcut form
looks like "group: name: version".

Repositories

While adding external dependencies, Gradle looks for them in a repository. A collection of
files, organised by group, name and version is termed as a repository. By default, Gradle
does not define any repositories. We have to define at least one repository explicitly. The
following code snippet defines how to define maven repository. Use this code
in build.gradle file.

repositories {
mavenCentral()

}

Following code is to define remote maven. Use this code in build.gradle file.

repositories {

maven {

url "http://repo.mycompany.com/maven2"

N
Nl

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

Publishing Artifacts

Dependency configurations are also used to publish files. These published files are called
artifacts. Usually, we use plug-ins to define artifacts. However, you do need to tell Gradle,
where to publish the artifacts.

You can achieve this by attaching repositories to the upload archives task. Take a look at
the following syntax for publishing Maven repository. While executing, Gradle will generate
and upload a Pom.xml as per the project requirements.

Use this code in build.gradle file.

apply plugin: 'maven’

uploadArchives {
repositories {
mavenDeployer {

repository(url: "file://localhost/tmp/myRepo/")

28

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

6. Gradle — Plugins

Plugin is nothing but set of all useful tasks, such as compiling tasks, setting domain
objects, setting up source files, etc. are handled by plugins. Applying a plugin to a project
means that it allows the plugin to extend the project’s capabilities.

The plugins can do the things such as:
e Extend the basic Gradle model (e.g. add new DSL elements that can be configured).
e Configure the project, according to conversions (e.g. add new tasks or configure
sensible defaults).
e Apply specific configuration (e.g. add organisational repositories or enforce

standards).

Types of Plugins

There are two types of plugins in Gradle, which are as follows:

e Script plugins: Script plugins is an additional build script that gives a declarative
approach to manipulating the build. This is typically used within a build.

e Binary plugins: Binary plugins are the classes, that implements the plugin
interface and adopt a programmatic approach to manipulating the build. Binary
plugins can reside with a build script, with the project hierarchy or externally in a

plugin JAR.

Applying Plugins

Project.apply() API method is used to apply the particular plugin. You can use the same
plugin for multiple times. There are two types of plugins one is script plugin and second is
binary plugin.

Script Plugins

Script plugins can be applied from a script on the local filesystem or at a remote location.
Filesystem locations are relative to the project directory, while remote script locations
specify HTTP URL.

Take a look at the following code snippet. It is used to apply the other.gradle plugin to
the build script. Use this code in build.gradle file.

apply from: ‘'other.gradle’

29

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

Binary Plugins

Each plugin is identified by plugin id. Some core plugins use short names to apply the
plugin id and some community plugins use fully qualified name for plugin id. Sometimes,
it allows to specify the class of plugin.

Take a look into the following code snippet. It shows how to apply java plugin by using its
type. Use this code in build.gradle file.

apply plugin: JavaPlugin

Take a look into the following code for applying core plugin using short name. Use this
code in build.gradle file.

plugins {
id 'java'

}

Take a look into the following code for applying community plugin using short name. Use
this code in build.gradle file.

plugins {

id "com.jfrog.bintray"” version "0.4.1"

Writing Custom Plugins

While creating a custom plugin, you need to write an implementation of plugin. Gradle
instantiates the plugin and calls the plugin instance using Plugin.apply() method.

The following example contains a greeting plugin, which adds a hello task to the project.
Take a look into the following code and use this code in build.gradle file.

apply plugin: GreetingPlugin

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
project.task('hello') << {
println "Hello from the GreetingPlugin"

}

Use the following code to execute the above script.

C:\> gradle -q hello

30

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

Output

This produces the following output:

Hello from the GreetingPlugin

Getting Input from the Build

Most of the plugins need the configuration support from the build script. The Gradle project
has an associated ExtensionContainer object that helps to track all the setting and
properties being passed to plugins.

Let's add a simple extension object to the project. Here, we add a greeting extension
object to the project, which allows you to configure the greeting. Use this code
in build.gradle file.

apply plugin: GreetingPlugin

greeting.message = 'Hi from Gradle'

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
// Add the 'greeting' extension object

project.extensions.create("greeting", GreetingPluginExtension)

// Add a task that uses the configuration
project.task('hello') << {

println project.greeting.message

class GreetingPluginExtension {

def String message = 'Hello from GreetingPlugin'

}

Use the following code to execute the above script.

C:\> gradle -q hello

Output

When you run the code, you will see the following output:

31

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

Hi from Gradle

In this example, GreetingPlugin is a simple, old Groovy object with a field called message.
The extension object is added to the plugin list with the name greeting. This object, then
becomes available as a project property with the same name as the extension object.

Gradle adds a configuration closure for each extension object, so you can group the
settings together. Take a look at the following code. Use this code in build.gradle file.

apply plugin: GreetingPlugin

greeting {
message = 'Hi'’
greeter = 'Gradle'
}

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {

project.extensions.create("greeting", GreetingPluginExtension)

project.task('hello') << {

println "${project.greeting.message} from ${project.greeting.greeter}"

class GreetingPluginExtension {
String message

String greeter

}

Use the following code to execute the above script.

C:\> gradle -q hello

Output

The output is mentioned below:

Hello from Gradle

32

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Standard Gradle Plugins

Gradle

There are different plugins, which are included in the Gradle distribution.

Language Plugins

These plugins add support for various languages, which can be compiled and executed in

the JVM.

Plugin Automatically
Id Applies

Description

java java-base

Adds Java compilation, testing, and bundling capabilities to a
project. It serves as the basis for many of the other Gradle
plugins.

groovy java,groovy-base

Adds support for building Groovy projects.

scala java,scala-base

Adds support for building Scala projects.

antlr Java

Adds support for generating parsers using Antlr.

Incubating Language Plugins

These plugins add support for various languages.

Plugin Id Automatically Description
Applies
assembler - Adds native assembly language capabilities to a
project.

o - Adds C source compilation capabilities to a project.
cpp - Adds C++ source compilation capabilities to a
project.
objective-c - Adds Objective-C source compilation capabilities to a
project.
objective-cpp - Adds Objective-C++ source compilation capabilities

to a project.
windows- - Adds support for including Windows resources in
resources native binaries.
33
[. .
w tutorialspoint

7. Gradle - Running a Build

Gradle provides a command line to execute build script. It can execute more than one task
at a time. This chapter explains how to execute multiple tasks using different options.

Executing Multiple Tasks

You can execute multiple tasks from a single build file. Gradle can handle the build file
using gradle command. This command will compile each task in such an order that they
are listed and execute each task along with the dependencies using different options.

Example — There are four tasks - taskl, task2, task3, and task4. Task3 and task4
depends on task land task2. Take a look at the following diagram.

Task 1 J-é{—(Task 2 }<7[Task 3]< Task 4

In the above 4 tasks are dependent on each other represented with an arrow symbol. Take
a look into the following code. Copy can paste it into build.gradle file.

task taskl << {

println ‘compiling source'’

task task2(dependsOn: taskl) << {

println ‘compiling unit tests’

task task3(dependsOn: [taskl, task2]) << {

println 'running unit tests'

task task4(dependsOn: [taskl, task3]) << {
println ‘'building the distribution’

}

You can use the following code for compiling and executing above task.

C:\> gradle task4 test

Output
34

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

The output is stated below:

:task1l

compiling source

:task2

compiling unit tests
:task3

running unit tests

:task4

building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

Excluding Tasks

While excluding a task from the execution you can use -x option along with the gradle
command and mention the name of the task, which you want to exclude.

Use the following command to exclude task4 from the above script.

C:\> gradle task4 -x test

Output
Cited below is the output of the code:

:taskl

compiling source

:task4

building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

Continuing the Build

Gradle will abort execution and fail the build as soon as any task fails. You can continue
the execution, even when a failure occurs. For this, you have to use —continue option with
the gradle command. It handles each task separately along with their dependences.

35

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

The main point is that it will catch each encountered failure and report at the end of the
execution of the build. Suppose, if a task fails, then the dependent subsequent tasks also
will not be executed.

Selecting Build to Execute

When you run the gradle command, it looks for a build file in the current directory. You
can use the -b option to select a particular build file along with absolute path.

The following example selects a project hello from myproject.gradle file, which is located
in the subdir/.

task hello << {

println "using build file '$buildFile.name’ in

'$buildFile.parentFile.name’.

}

You can use the following command to execute the above script.

C:\> gradle -q -b subdir/myproject.gradle hello

Output

This produces the following output:

using build file 'myproject.gradle’' in 'subdir'.

Obtaining Build Information

Gradle provides several built-in tasks for retrieving the information details regarding the
task and the project. This can be useful to understand the structure, the dependencies of
your build and for debugging the problems.

You can use project report plugin to add tasks to your project, which will generate these
reports.

Listing Projects

You can list the project hierarchy of the selected project and their sub projects
using gradle —q projects command. Use the following command to list all the project in
the build file. Here is the example,

C:\> gradle -q projects

Output

The output is stated below:

36

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

Root project 'projectReports’

+--- Project ':api' - The shared API for the application

\--- Project ':webapp' - The Web application implementation

To see a list of the tasks of a project, run gradle <project-path>:tasks

For example, try running gradle :api:tasks

The report shows the description of each project, if specified. You can use the following
command to specify the description. Paste it in the build.gradle file.

description = 'The shared API for the application'

Listing Tasks

You can list all the tasks which belong to the multiple projects by using the following
command.

C:\> gradle -q tasks

Output

The output is given herewith:

Default tasks: dists

Build tasks

clean - Deletes the build directory (build)
dists - Builds the distribution

libs - Builds the JAR

Build Setup tasks

init - Initializes a new Gradle build. [incubating]

wrapper - Generates Gradle wrapper files. [incubating]

37

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root
project 'projectReports’.

components - Displays the components produced by root project 'projectReports’.
[incubating]

dependencies - Displays all dependencies declared in root project
'projectReports’.

dependencyInsight - Displays the insight into a specific dependency in root
project 'projectReports’.

help - Displays a help message.

model - Displays the configuration model of root project 'projectReports'.
[incubating]

projects - Displays the sub-projects of root project 'projectReports’.
properties - Displays the properties of root project 'projectReports’.
tasks - Displays the tasks runnable from root project 'projectReports’

(some of the displayed tasks may belong to subprojects).

To see all tasks and more detail, run gradle tasks --all

To see more detail about a task, run gradle help --task <task>

You can use the following command to display the information of all tasks.

C:\> gradle -q tasks --all

Output

When you execute the above code, you should see the following output:

Default tasks: dists

Build tasks

clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp:clean - Deletes the build directory (build)

(€8]
(¢0]

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

dists - Builds the distribution [api:1libs, webapp:libs]
docs - Builds the documentation

api:libs - Builds the JAR
api:compile - Compiles the source files

webapp:libs - Builds the JAR [api:libs]

webapp:compile - Compiles the source files

Build Setup tasks

init - Initializes a new Gradle build. [incubating]

wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root
project 'projectReports’.

api:buildEnvironment - Displays all buildscript dependencies declared in
project ':api'.

webapp:buildEnvironment - Displays all buildscript dependencies declared in
project ':webapp'.

components - Displays the components produced by root project 'projectReports’.
[incubating]

api:components - Displays the components produced by project ':api'.
[incubating]

webapp:components - Displays the components produced by project
[incubating]

:webapp'.

dependencies - Displays all dependencies declared in root project
'projectReports’.

api:dependencies - Displays all dependencies declared in project ':api’.

webapp:dependencies - Displays all dependencies declared in project ':webapp’.

dependencyInsight - Displays the insight into a specific dependency in root
project 'projectReports’.

api:dependencyInsight - Displays the insight into a specific dependency in
project ':api'.

webapp:dependencyInsight - Displays the insight into a specific dependency in
project ':webapp'.

help - Displays a help message.
api:help - Displays a help message.

webapp:help - Displays a help message.

39

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

model - Displays the configuration model of root project 'projectReports'.
[incubating]

api:model - Displays the configuration model of project ':api'. [incubating]

webapp:model - Displays the configuration model of project
[incubating]

:webapp'.

projects - Displays the sub-projects of root project 'projectReports’.

api:projects - Displays the sub-projects of project ':api’.

webapp:projects - Displays the sub-projects of project ':webapp’.

properties - Displays the properties of root project 'projectReports'.

api:properties - Displays the properties of project ':api'.

webapp:properties - Displays the properties of project ':webapp'.
tasks - Displays the tasks runnable from root project 'projectReports’
(some of the displayed tasks may belong to subprojects).

api:tasks - Displays the tasks runnable from project ':api'.

webapp:tasks - Displays the tasks runnable from project ':webapp’.
The list of commands is given below along with the description.
Sr. No. Command Description
gradle —-q help -task <task Provides the .usage information (such .as path,
1 type, description, group) about a specific task or
name> '
multiple tasks.
. Provides a list of dependencies of the selected
2 gradle —q dependencies .
project.
3 gradle -q api:dependencies -- | Provides the list of limited dependencies respective
configuration <task name> to configuration.
4 gradle —q buildEnvironment Provides the list of build script dependencies.
5 gradle —q dependencylnsight Provides an insight into a particular dependency.
6 Gradle -q properties Provides the list of properties of the selected
project.
40
(P . .
w tutorialspoint

8. Gradle—Build a JAVA Project

This chapter explains how to build a java project using Gradle build file.

First of all, we have to add java plugin to the build script, because, it provides the tasks
to compile Java source code, to run the unit tests, to create a Javadoc and to create a JAR
file.

Use the following line in build.gradle file.

apply plugin: 'java'

Java Default Project Layout

Whenever, you add a plugin to your build, it assumes a certain setup of your Java project
(similar to Maven). Take a look into the following directory structure.

e src/main/java contains the Java source code.

e src/test/java contains the Java tests.

If you follow this setup, the following build file is sufficient to compile, test, and bundle a
Java project.

To start the build, type the following command on the command line.

C:\> gradle build

SourceSets can be used to specify a different project structure. For example, the sources
are stored in a src folder, rather than in src/main/java. Take a look at the following
directory structure.

apply plugin: 'java'
sourceSets {
main {
java {

srcDir 'src

}
}
test {
java {
srcDir 'test’
}

41

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

init Task Execution

Gradle does not support multiple project templates. But, it offers an init task to create the
structure of a new Gradle project. Without additional parameters, this task creates a
Gradle project, which contains the gradle wrapper files,
a build.gradle and settings.gradle file.

When adding the --type parameter with java-library as value, a java project structure is
created and the build.gradle file contains a certain Java template with Junit. Take a look
at the following code for build.gradle file.

apply plugin: 'java'

repositories {

jcenter()

dependencies {
compile ‘'org.slf4j:slf4j-api:1.7.12°'
testCompile 'junit:junit:4.12°

}

In the repositories section, it defines where to find the dependencies. Jcenter is for
resolving your dependencies. Dependencies section is for providing information about
external dependencies.

Specifying Java Version

Usually, a Java project has a version and a target JRE on which it is compiled.
The version and sourceCompatibility property can be set in the build.gradle file.

version = 0.1.0

sourceCompatibility = 1.8

If the artifact is an executable Java application, the MANIFEST.MF file must be aware of
the class with the main method.

apply plugin: 'java'

jar {

manifest {

¥

42

tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

attributes 'Main-Class': 'com.example.main.Application'’

}

Example

Create a directory structure as shown in the below screenshot.

Hame e Yew
- p T Hew it = i P st a0
2 i)] ey amus e o t St nane
et Nw Fripiriel a
e it ¢ BHelery N irmir sldion
dansurneibanking Mame : Daze sncdiied Type Sze
1
. SIC 373720 LA File folder
man |
- build.gradle B/3/2046 5400 P GRADLE File KB
jaa =
com
. bank
. rescurces
. test
jerea
cem
bk

Copy the below given java code into App.java file and store
into consumerbanking\src\main\java\com\bank directory.

package com.bank;

/**
* Hello world!

E3
*/
public class App {

public static void main(String[] args){
System.out.println("Hello World!");

}

Copy the below given java code into AppTset.java file and store
into consumerbanking\src\test\java\com\bank directory.

package com.bank;

/**

* Hello world!

n
(8]

w tutorialspoint

Gradle

*

*/

public class App{

public static void main(String[] args){
System.out.println("Hello World!");

}

Copy the below given code into build.gradle file and placed
into consumerbanking\ directory.

apply plugin: 'java'

repositories {

jcenter()

dependencies {
compile 'org.slf4j:slfd4j-api:1.7.12"
testCompile 'junit:junit:4.12'

}
jar {
manifest {
attributes 'Main-Class': 'com.example.main.Application'’
}
}

To compile and execute the above script use the below given commands.

consumerbanking\> gradle tasks
consumerbanking\> gradle assemble

consumerbanking\> gradle build

Check all the class files in the respective directories and
check consumerbanking\build\lib folder for consumerbanking.jar file.

a4

tutorialspoint

EIMPLYEAGSY LEARMNINIG

3]

9. Gradle — Build a Groovy Project

This chapter explains how to compile and execute a Groovy project
using build.gradle file.

The Groovy Plug-in

The Groovy plug-in for Gradle extends the Java plug-in and provides tasks for Groovy
programs. You can use the following line for applying groovy plugin.

apply plugin: 'groovy'

Copy the following code into build.gradle file. The complete build script file is as follows:

apply plugin: 'groovy’

repositories {

mavenCentral()

dependencies {
compile 'org.codehaus.groovy:groovy-all:2.4.5"
testCompile 'junit:junit:4.12'

}

You can use the following command to execute the build script.

gradle build

Default Project Layout

The Groovy plugin assumes a certain setup of the Groovy project.

e src/main/groovy contains the Groovy source code.
e src/test/groovy contains the Groovy tests.
e src/main/java contains the Java source code.

e src/test/java contains the Java tests.

Check the respective directory where build.gradle file places for build folder.

45

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

10. Gradle — Testing

The test task automatically detects and executes all the unit tests in the test source set.,
Once the test execution is complete, it also generates a report. JUnit and TestNG are the
supported APIs.

The test task provides a Test.getDebug() method which can be set in order to launch,
so that the JVM can wait for a debugger. Before proceeding to the execution, it sets the
debugger post to 5005.

Test Detection

The Test Task detects which classes are test classes by inspecting the compiled test
classes. By default, it scans all .class files. You can set custom includes / excludes and
only those classes will be scanned.

Depending on the test framework used (JUnit / TestNG), the test class detection uses the
different criteria. When using JUnit, we scan for both JUnit 3 and 4 test classes.

If any of the following criteria match, the class is considered to be a JUnit test class:

e Class or a super class extends TestCase or GroovyTestCase.
e Class or a super class is annotated with @RunWith.
e Class or a super class contain a method annotated with @Test.

e When using TestNG, we scan for methods annotated with @Test.

Note: The abstract classes are not executed. Gradle also scans the inheritance tree into
jar files on the test classpath.

If you don't want to use the test class detection, you can disable it by
setting scanForTestClasses to false.

Test Grouping

JUnit and TestNG allows sophisticated grouping of test methods. For grouping, JUnit test
classes and methods JUnit 4.8 introduces the concept of categories. The test task allows
the specification of the JUnit categories, which you want to include and exclude.

You can use the following code snippet in build.gradle file to group test methods:

test {
useJUnit {
includeCategories 'org.gradle.junit.CategoryA'

excludeCategories 'org.gradle.junit.CategoryB’

46

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

Include and Exclude Tests

The Test class has an include and exclude method. These methods can be used to
specify which tests should actually be run.

Use the below mentioned code to run only the included tests:

test {

include '**my.package.name/*'

}

Use the code given below to skip the excluded tests:

test {

exclude '**my.package.name/*'

}

The sample build.gradle file as stated below, shows different configuration options.

apply plugin: 'java' // adds 'test' task

test {
// enable TestNG support (default is JUnit)
useTestNG()

// set a system property for the test JVM(s)

systemProperty 'some.prop', 'value'

// explicitly include or exclude tests
include ‘'org/foo/**'

exclude 'org/boo/**'

// show standard out and standard error of the test JVM(s) on the console

testLogging.showStandardStreams = true

// set heap size for the test JVM(s)
minHeapSize = "128m"

maxHeapSize "512m"

// set JVM arguments for the test JVM(s)

jvmArgs '-XX:MaxPermSize=256m'

a4/

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

// listen to events in the test execution lifecycle
beforeTest {

descriptor - logger.lifecycle("Running test: + descriptor)

// listen to standard out and standard error of the test JVM(s)
onOutput {
descriptor, event - logger.lifecycle

("Test: " + descriptor + " produced standard out/err:

+ event.message)

}

You can use the following command syntax to execute some test task:

gradle <someTestTask> --debug-jvm

tutorialspoint

EIMPLYEAGSY LEARMNINIG

48

11. Gradle — Multi-Project Build

Gradle can handle smallest and largest projects easily. Small projects have a single build
file and a source tree. It is very easy to digest and understand a project that has been
split into smaller, inter-dependent modules. Gradle perfectly supports this scenario that is
multi-project build.

Structure for Multi-project Build

Such builds come in all shapes and sizes, but they do have some common characteristics,
which are as follows:

e A settings.gradle file in the root or master directory of the project.
e A build.gradle file in the root or master directory.
e Child directories that have their own *.gradle build files (some multi-project builds

may omit child project build scripts).

For listing all the projects in the build file, you can use the following command.

C:\> gradle -q projects

Output

You will receive the following output:

Root project 'projectReports’
+--- Project ':api' - The shared API for the application

\--- Project ':webapp' - The Web application implementation

To see a list of the tasks of a project, run gradle <project-path>:tasks

For example, try running gradle :api:tasks

The report shows the description of each project, if specified. You can use the following
command to specify the description. Paste it in the build.gradle file.

description = 'The shared API for the application’

49

@ tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

General Build Configuration

In a build.gradle file in the root_project, general configurations can be applied to all
projects or just to the sub projects.

allprojects {
group = 'com.example.gradle'

version = '9.1.0'

subprojects {
apply plugin: 'java'
apply plugin: ‘'eclipse’
}

This specifies a common com.example.gradle group and the 0.1.0 version to all
projects. The subprojects closure applies common configurations for all sub projects, but
not to the root project, like the allprojects closure does.

Configurations and Dependencies

The core ui and util subprojects can also have their own build.gradle file, if they have
specific needs, which are not already applied by the general configuration of the root
project.

For instance, usually, the ui project has a dependency to the core project. So, the ui project
needs its own build.gradle file to specify this dependency.

dependencies {
compile project(':core')
compile 'log4j:logdj:1.2.17"
}

Project dependencies are specified with the project method.

50

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

12. Gradle — Deployment

Gradle offers several ways to deploy build artifacts repositories. When deploying
signatures for your artifacts to a Maven repository, you will also want to sign the published
POM file.

Maven-publish Plugin

By default, maven-publish plugin is provided by Gradle. It is used to publish the gradle
script. Take a look into the following code.

apply plugin: 'java'
apply plugin: 'maven-publish’

publishing {
publications {
mavenJava(MavenPublication) {

from components.java

repositories {
maven {

url "$buildDir/repo"

}

There are several publish options, when the Java and the maven-publish plugin is
applied. Take a look at the following code, it will deploy the project into a remote
repository.

apply plugin: 'groovy'
apply plugin: 'maven-publish’

group 'workshop'

version = '1.0.0"'

51

w tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

publishing {
publications {
mavenJava(MavenPublication) {

from components.java

repositories {
maven {
default credentials for a nexus repository manager
credentials {
username ‘admin’
password ‘adminl23’
}
// url to the releases maven repository

url "http://localhost:8081/nexus/content/repositories/releases/"

Converting from Maven to Gradle

There is a special command for converting Apache Maven pom.xml files to Gradle build
files and is executed, if all the used Maven plug-ins are known to this task.

In this section, the following pom.xml maven configuration will be converted to a Gradle
project. Take a look into it.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation = "http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>com.example.app</groupIld>
<artifactId>example-app</artifactId>

<packaging>jar</packaging>

52

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

<version>1.0.0-SNAPSHOT</version>

<dependencies>
<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>

<version>4.11</version>
<scope>test</scope>
</dependency>

</dependencies>

</project>

You can use the following command on the command line that results in the following
Gradle configuration.

C:\> gradle init --type pom

The init task depends on the wrapper task, so that a Gradle wrapper is created.

The resulting build.gradle file looks similar to the one mentioned below:

apply plugin: 'java'
apply plugin: 'maven’

group = 'com.example.app'

version = '1.0.0-SNAPSHOT'

descr\iption = mwmwmnn
sourceCompatibility = 1.5
targetCompatibility = 1.5

repositories {

maven { url "http://repo.maven.apache.org/maven2" }

dependencies {

53

tutorialspoint

EIMPLYEAGSY LEARMNINIG

¥

Gradle

testCompile group: 'junit', name: 'junit', version:'4.11'

54

w tutorialspoint

13. Gradle — Eclipse Integration

This chapter explains about the integration of eclipse and Gradle. Follow the below given
steps for adding Gradle plugin to eclipse.

Step 1 — Open Eclipse Marketplace

First of all, open the eclipse which is installed in your system. Go to help -> click on
EclipseMarketplace. Take a look at the following screenshot:

Fie D Rlsigah: 3od0h Pigell Rt Wiadie | HE |

EECE R & e S A e e G tvces || o | R
By Pocgunt Exphams B = | g o= P Hel Conoews = O e Cube reg———
+ B emtt | o PR p—
Ty [prareis Haip
Ky Emicka. Sl

Tignard Tricin_

@ Paped Dug e Crhane sva el
Chist Shastr.

Y Pk St Taikan

% Chirk Tar lpdse

B ol bow Seanc.,

B larisivson Detub

g e T

B Abcut Edipm

- Fuzartas | o S 1T B ; EROFEE "0
o B Toman-diliienms siccshan [opped Fozatins]

Step 2 - Install Buildship Plugin

After click on the Eclipse Marketplace, you will find the screenshot which is given below.
Here, in the left side search bar type buildship, which is a Gradle integration plugin. When
you find the buildship on your screen, click on install on the right side.

55

w tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

Eclipse Marketplace

Select solutions to install. Press Finish to proceed with installation.
Press the information button to see a detailed overview and a link to more information.

‘W[R«Jmlggpu_m | Installed | |, February Newsletter
Find: [buildship Q mleru Markets v| | All Categories

Buildship Gradle Integration 1.0

Eclipse plug-ins that provide support for building software using Gradle. This
solution is provided by the Eclipse Foundation, Get Help « Report a Bug «
More... more info

Gradle by Eclipse Buildship Project EPL

| Installs: 29.1K (3,832 last month)

Minimalist Gradle Editor 1.0.1

Minimalist Gradle Editor for build.gradle files with highlight for keywords,
strings and matching brackets and android support (by taking some additional
keywords... more info

b Madachnes/Enida G0DI

< Back Install Now >

After that, you will find the following screenshot. Here, you need to confirm the software
installation by clicking on the confirm button.

56

' tutorialspoint

EIMPLYEAGSYLEARNING

Gradle

Confirm Selected Features

Caonfirm the features to include in this provisioning operation. Or go back to choose H
more solutions to install.

a @ Buildship Gradle Integration 1.0 http://download.eclipze.orgf/buildship/updates/e15/relea
g Buildship: Eclipse Plug-ins for Gradle (required]

< Install More ” Confirm ~

Then, you need to click on accept license agreement as shown in the following screen
and later on click finish.

57

' tutorialspoint

EIMPLYEAGSYLEARNING

Gradle

Review Licenses

Licenses must be reviewed and accepted before the software can be installed.

License text (for Buildship: Eclipse Plug-ins for Gradle 1.0.9.v20160211-1429):

Eclipse Foundation Software User Agreement
April 9, 2014

Usage Of Content

THE ECLIPSE FOUMDATION MAKES AVAILABLE SOFTWARE, DOCUMENTATION, INFORMATION
AND/OR

OTHER MATERIALS FOR OPEN SOURCE PROJECTS (COLLECTIVELY "COMNTENT").

USE OF THE CONTEMNT IS GOVERMED BY THE TERMS AND COMNDITIONS OF THIS
AGREEMENT AMD/OR THE TERMS AND COMDITIONS OF LICEMSE AGREEMENTS OR
MOTICES INDICATED OR REFEREMCED BELOW, BY USING THE COMTENT, YOU

AGREE THAT YOUR USE OF THE COMTENT 15 GOVERMED BY THIS AGREEMENT
AMD/OR THE TERMS AND CONDITIONS OF ANY APPLICABLE LICEMNSE AGREEMEMNTS
OR MOTICES INDICATED OR REFEREMCED BELOW. |F YOU DO NOT AGREE TO THE
TERMS AND COMDITIONS OF THIS AGREEMENT AMD THE TERMS AMD COMDITIONS
OF ANY APPLICABLE LICEMSE AGREEMEMTS OR NOTICES INDICATED OR REFEREMCED
BELOW, THEM YOU MAY NOT USE THE CONTENMT.

Applicable Licenses

Unless otherwise indicated, all Content made available by the

Eclipse Foundation is provided to you under the terms and conditions of

the Eclipse Public License Version 1.0 ("EPL"). A copy of the EPL is

provided with this Content and is also available at http:/fwww.eclipse.org/legalfepl-v10.html.
For purposes of the EPL, "Program” will mean the Content.

(@) accept the terms of the license agreement;

()| do not accept the terms of the license agreement

®@

It will take some time to install. Refer the screenshot given below for detailed
understanding.

58

w tutorialspoint

EIMPLYEAGSY LEARMNINIG

Gradle

E Tarva EE - Exlipnr - =
M= Gw|®=I i a B G OrQ="lrO=Smo =0y - (v b s 70 | % Mk
[y Progect Exploras 1] = 1 E= Dutles T ¥

& mal i autine 5. rob soslaisie
= S

“ Ienvkallinng Sl

|

[R |
P s Buiegroarsd Careeel Cietaih
£ Mk [T Reporiies | 8 Sover 11 Hi Sote bowrre plamer 2 Sippechy [fomste B O 5
%, Taman w0 oo ot oo |Sopped)
1 e st ed retaleng Sohwaie (%1 =i

After that, it will ask for restarting Eclipse. There, you will have to select Yes.

Step 3 - Verifying Gradle Plugin

While verifying, we will create a new project by following the given procedure. In the
eclipse, go to file -=> click on new-> click on other projects. Now, you will see the
following screen. Later on, select Gradle project and click next. Refer the below mentioned

screen shot.

L 1 Arm arineted

2 Madex

= 1T

Galncr n wirsd

Coares i ot Grtsclha acisct in s el Tks myetam,

Wi

= larva EE « Eclipse - &
. rre e — S iy

~i= Biw|F I ML oS gerRe eSO Pel@liy - = ¥ ey T | 2% ik
Pougent D 15 = ' Chdbere ¥ « =
F-2) 1 BT L T b
-

After clicking next button, you will find the following screen. After that, you will provide
the Gradle home directory path of local file system and click on next button. The
screenshot is given below:

Y.

tutorialspoint

EIMPLYEAGSY LEARMNINIG

59

Gradle

Options
Specify optional options to apply when creating, importing, and interacting with
the Gradle project.
Gradle distribution
1 Gradle wrepper (recommended)
® Local installation dircctory I Cvwork!22- Orientdb'gradie-2.11
) Bermote distribution lacation

) pecrhec Gradle version

Advanced options
Gradle user home dircctory [
Java home directory l

JNM ephions

Program arguments

Click the Finish button to finish the wizard and creste and import the new
Gradle project. Click the Mo button to sce a summary of the cenfiguration.

Eimish Cancel

You will have to provide the name for Gradle project. In this tutorial, we are
using demoproject and click finish button. The screenshot is mentioned below:

60

' tutorialspoint

EIMPLYEAGSYLEARNING

Gradle

Mew Gradle Froject
Specify the name of the Gradle project to create.

Project namel demaproject

Project location
[Use default location

Location Efvwork18-Sendets\serviet_workspace

Working sets
[add proyect to wnrking sets

Warking scts W Seleet...

Click the Finich button to finich the wizard and create and impodt the new
Gradle project. Click the Mext button to select optional options.

We need to confirm the project. For that, we have to click finish button in the following
screen.

61

' tutorialspoint

EIMPLYEAGSYLEARNING

Gradle

Review the configuration before starting the ercation and import of the Gradlc m ra d 'e
project,

Fl'l'ljl-l.ll vownl alivess fomy: Fohnm ik W 19=-Srrul el viomned el s ik span =% derm

Uradie user home directory: U serseatah cellzbunuaadle
Gradle distribution: Local installation at Efwork22- Unentdbygradie-2.11
Gradlc version: &l

Java home directory: A Program Files\ am\pre1 0.0_66
JWM options: blona

Frogram ergumcnts: Mone

Gradle project structure: i
dema

Click the Finish button to finish the wizard and create and import the now
Graddle I.nuju:n.l.. Clivk Ure Dav bk Lasllvis Luw l'l.*.l.'ol Ure wan ﬁ:.lLIﬂL-Il.HI.

Step 4 - Verifying Directory Structure

After successful installation of Gradle plugin, please check the demo project directory
structure for the default files and folders as shown in the following screenshot.

62

' tutorialspoint

EIMPLYEAGSYLEARNING

Gradle

Ble Edit Movigate Semch Broject Hom Window Help
s PR = i T B e i e Sl ¥ Rl S Bl < o s B B S S et b B

Cuick Access | 7 | [lwate
[er— =8 o B e =0
Fl __ﬂ_H_TI_I?_ - I
[(™ srcfenainjaa An outline is not available.
b st

b Wk JRE Systare Libeary [jre1.2.0 48]
o Wi Project ard Extemal Depandencies
I (= gradle
A=
G Budd.gradie
B grmdiew
il gradiew bat
G settings.gradle
= B gl
= B Serven

& Snipp.. 2 Console | (5 Gradbe.. &F

63

' tutorialspoint

EIMPLYEAGSYLEARNING

