
 Prolog

 i

 Prolog

 ii

About the Tutorial

Prolog or PROgramming in LOGics is a logical and declarative programming language. It

is one major example of the fourth generation language that supports the declarative

programming paradigm. This is particularly suitable for programs that involve symbolic

or non-numeric computation.

Audience

This reference has been prepared for the beginners to help them understand the basics of

prolog.

Prerequisites

For this tutorial, it is assumed that the reader has a prior knowledge in coding.

Copyright & Disclaimer

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

 Prolog

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Prolog ― Introduction .. 1

Logic and Functional Programming ... 1

What is Prolog? ... 3

History of Prolog .. 3

Some Applications of Prolog.. 3

2. Prolog — Environment Setup .. 5

Prolog Version ... 5

Official Website ... 5

Direct Download Link .. 5

Installation Guide .. 5

3. Prolog — Hello World ... 10

Hello World Program ... 10

4. Prolog — Basics ... 13

Facts... 13

Rules .. 14

Queries .. 15

Knowledge Base in Logic Programming ... 15

5. Prolog — Relations ... 20

Relations in Prolog ... 20

Family Relationship in Prolog .. 21

Recursion in Family Relationship ... 30

 Prolog

 iv

6. Prolog — Data Objects .. 35

Atoms and Variables .. 36

Anonymous Variables in Prolog ... 37

7. Prolog — Operators .. 39

Comparison Operators .. 39

Arithmetic Operators in Prolog ... 40

8. Prolog — Loop & Decision Making .. 42

Loops ... 42

Decision Making .. 45

9. Prolog — Conjunctions & Disjunctions .. 47

Conjunction ... 47

Disjunction ... 47

10. Prolog — Lists ... 49

Representation of Lists .. 49

Basic Operations on Lists ... 49

Membership Operation ... 50

Length Calculation ... 51

Concatenation ... 52

Delete from List ... 53

Append into List... 54

Insert into List .. 55

Repositioning operations of list items ... 56

Permutation Operation ... 56

Reverse Operation ... 59

Shift Operation .. 59

Order Operation .. 60

Set operations on lists ... 61

Subset Finding Operation .. 61

 Prolog

 v

Union Operation .. 63

Intersection Operation .. 64

Misc Operations on Lists ... 65

Even and Odd Length Operation ... 65

Divide List Operation ... 66

Max Item Operation .. 68

List Sum Operation .. 69

Merge Sort on a List .. 70

11. Prolog — Recursion and Structures ... 72

Recursion ... 72

Structures .. 73

Matching in Prolog .. 74

Binary Trees ... 74

12. Prolog — Backtracking .. 76

How Backtracking works? .. 76

Preventing Backtracking .. 79

Negation as Failure .. 82

13. Prolog — Different and Not .. 85

Not Relation in Prolog ... 87

14. Prolog — Inputs and Outputs .. 88

Handling input and output .. 88

Reading/Writing Files .. 90

Processing files of terms .. 92

Manipulating characters .. 93

Constructing Atoms ... 95

Decomposing Atoms.. 95

The consult in Prolog ... 96

15. Prolog — Built-In Predicates ... 98

 Prolog

 vi

The var(X) Predicate .. 98

The novar(X) Predicate .. 99

The atom(X) Predicate ... 99

The number(X) Predicate .. 100

The integer(X) Predicate .. 100

The float(X) Predicate .. 100

The atomic(X) Predicate .. 101

The compound(X) Predicate .. 101

The ground(X) Predicate .. 102

Decomposing Structures ... 102

The functor(T,F,N) Predicate ... 102

The arg(N,Term,A) Predicate ... 103

The ../2 Predicate .. 103

Collecting All Solutions .. 104

Findall/3, Setof/3 and Bagof/3 .. 105

The bagof/3 Predicate ... 108

Mathematical Predicates ... 109

16. Prolog — Tree Data Structure (Case Study) ... 112

More on Tree Data Structure .. 115

Advances in Tree Data Structures ... 117

PROLOG — EXAMPLES .. 121

17. Prolog ― Basic Programs .. 122

Max and Min of two numbers ... 122

Resistance and Resistive Circuits ... 123

Horizontal and Vertical Line Segments .. 125

18. Prolog — Examples of Cuts ... 127

19. Prolog — Towers of Hanoi Problem .. 130

 Prolog

 vii

20. Prolog — Linked Lists .. 132

21. Prolog — Monkey and Banana Problem .. 134

 Prolog

 1

Prolog as the name itself suggests, is the short form of LOGical PROgramming. It is a

logical and declarative programming language. Before diving deep into the concepts of

Prolog, let us first understand what exactly logical programming is.

Logic Programming is one of the Computer Programming Paradigm, in which the program

statements express the facts and rules about different problems within a system of formal

logic. Here, the rules are written in the form of logical clauses, where head and body are

present. For example, H is head and B1, B2, B3 are the elements of the body. Now if we

state that “H is true, when B1, B2, B3 all are true”, this is a rule. On the other hand, facts

are like the rules, but without any body. So, an example of fact is “H is true”.

Some logic programming languages like Datalog or ASP (Answer Set Programming) are

known as purely declarative languages. These languages allow statements about what the

program should accomplish. There is no such step-by-step instruction on how to perform

the task. However, other languages like Prolog, have declarative and also imperative

properties. This may also include procedural statements like “To solve the problem H,

perform B1, B2 and B3”.

Some logic programming languages are given below:

 ALF (algebraic logic functional programming language).

 ASP (Answer Set Programming)

 CycL

 Datalog

 FuzzyCLIPS

 Janus

 Parlog

 Prolog

 Prolog++

 ROOP

Logic and Functional Programming

We will discuss about the differences between Logic programming and the traditional

functional programming languages. We can illustrate these two using the below diagram:

1. Prolog ― Introduction

 Prolog

 2

From this illustration, we can see that in Functional Programming, we have to define the

procedures, and the rule how the procedures work. These procedures work step by step

to solve one specific problem based on the algorithm. On the other hand, for the Logic

Programming, we will provide knowledge base. Using this knowledge base, the machine

can find answers to the given questions, which is totally different from functional

programming.

In functional programming, we have to mention how one problem can be solved, but in

logic programming we have to specify for which problem we actually want the solution.

Then the logic programming automatically finds a suitable solution that will help us solve

that specific problem.

Now let us see some more differences below:

Functional Programming Logic Programming

Functional Programming follows the Von-

Neumann Architecture, or uses the

sequential steps.

Logic Programming uses abstract model,

or deals with objects and their

relationships.

The syntax is actually the sequence of

statements like (a, s, I).

The syntax is basically the logic formulae

(Horn Clauses).

The computation takes part by executing

the statements sequentially.

It computes by deducting the clauses.

Logic and controls are mixed together. Logics and controls can be separated.

 Prolog

 3

What is Prolog?

Prolog or PROgramming in LOGics is a logical and declarative programming language. It

is one major example of the fourth generation language that supports the declarative

programming paradigm. This is particularly suitable for programs that involve symbolic

or non-numeric computation. This is the main reason to use Prolog as the programming

language in Artificial Intelligence, where symbol manipulation and inference

manipulation are the fundamental tasks.

In Prolog, we need not mention the way how one problem can be solved, we just need to

mention what the problem is, so that Prolog automatically solves it. However, in Prolog

we are supposed to give clues as the solution method.

Prolog language basically has three different elements:

Facts: The fact is predicate that is true, for example, if we say, “Tom is the son of Jack”,

then this is a fact.

Rules: Rules are extinctions of facts that contain conditional clauses. To satisfy a rule

these conditions should be met. For example, if we define a rule as:

grandfather(X, Y) :- father(X, Z), parent(Z, Y)

This implies that for X to be the grandfather of Y, Z should be a parent of Y and X should

be father of Z.

Questions: And to run a prolog program, we need some questions, and those questions

can be answered by the given facts and rules.

History of Prolog

The heritage of prolog includes the research on theorem provers and some other

automated deduction system that were developed in 1960s and 1970s. The Inference

mechanism of the Prolog is based on Robinson’s Resolution Principle, that was proposed

in 1965, and Answer extracting mechanism by Green (1968). These ideas came together

forcefully with the advent of linear resolution procedures.

The explicit goal-directed linear resolution procedures, gave impetus to the development

of a general purpose logic programming system. The first Prolog was the Marseille

Prolog based on the work by Colmerauer in the year 1970. The manual of this Marseille

Prolog interpreter (Roussel, 1975) was the first detailed description of the Prolog language.

Prolog is also considered as a fourth generation programming language supporting the

declarative programming paradigm. The well-known Japanese Fifth-Generation Computer

Project, that was announced in 1981, adopted Prolog as a development language, and

thereby grabbed considerable attention on the language and its capabilities.

Some Applications of Prolog

Prolog is used in various domains. It plays a vital role in automation system. Following are

some other important fields where Prolog is used:

 Intelligent Database Retrieval

 Natural Language Understanding

 Prolog

 4

 Specification Language

 Machine Learning

 Robot Planning

 Automation System

 Problem Solving

 Prolog

 5

In this chapter, we will discuss how to install Prolog in our system.

Prolog Version

In this tutorial, we are using GNU Prolog, Version: 1.4.5

Official Website

This is the official GNU Prolog website where we can see all the necessary details about

GNU Prolog, and also get the download link.

http://www.gprolog.org/

Direct Download Link

Given below are the direct download links of GNU Prolog for Windows. For other operating

systems like Mac or Linux, you can get the download links by visiting the official website

(Link is given above):

http://www.gprolog.org/setup-gprolog-1.4.5-mingw-x86.exe (32 Bit System)

http://www.gprolog.org/setup-gprolog-1.4.5-mingw-x64.exe (64 Bit System)

Installation Guide

 Download the exe file and run it.

 You will see the window as shown below, then click on next:

2. Prolog — Environment Setup

http://www.gprolog.org/
http://www.gprolog.org/setup-gprolog-1.4.5-mingw-x86.exe
http://www.gprolog.org/setup-gprolog-1.4.5-mingw-x64.exe

 Prolog

 6

Select proper directory where you want to install the software, otherwise let it be installed

on the default directory. Then click on next.

You will get the below screen, simply go to next.

 Prolog

 7

You can verify the below screen, and check/uncheck appropriate boxes, otherwise you

can leave it as default. Then click on next.

In the next step, you will see the below screen, then click on Install.

 Prolog

 8

Then wait for the installation process to finish.

Finally click on Finish to start GNU Prolog.

 Prolog

 9

The GNU prolog is installed successfully as shown below:

 Prolog

 10

In the previous section, we have seen how to install GNU Prolog. Now, we will see how to

write a simple Hello World program in our Prolog environment.

Hello World Program

After running the GNU prolog, we can write hello world program directly from the console.

To do so, we have to write the command as follows:

write('Hello World').

Note: After each line, you have to use one period (.) symbol to show that the line has

ended.

The corresponding output will be as shown below:

Now let us see how to run the Prolog script file (extension is *.pl) into the Prolog console.

Before running *.pl file, we must store the file into the directory where the GNU prolog

console is pointing, otherwise just change the directory by the following steps:

Step 1: From the prolog console, go to File > Change Dir, then click on that menu.

Step 2: Select the proper folder and press OK.

3. Prolog — Hello World

 Prolog

 11

Now we can see in the prolog console, it shows that we have successfully changed the

directory.

Step 3: Now create one file (extension is *.pl) and write the code as follows:

main :- write('This is sample Prolog program'),

write(' This program is written into hello_world.pl file').

Now let’s run the code. To run it, we have to write the file name as follows:

[hello_world]

The output is as follows:

 Prolog

 12

 Prolog

 13

In this chapter, we will gain some basic knowledge about Prolog. So we will move on to

the first step of our Prolog Programming.

The different topics that will be covered in this chapter are:

Knowledge Base: This is one of the fundamental parts of Logic Programming. We will

see in detail about the Knowledge Base, and how it helps in logic programming.

Facts, Rules and Queries: These are the building blocks of logic programming. We will

get some detailed knowledge about facts and rules, and also see some kind of queries that

will be used in logic programming.

Here, we will discuss about the essential building blocks of logic programming. These

building blocks are Facts, Rules and the Queries.

Facts

We can define fact as an explicit relationship between objects, and properties these objects

might have. So facts are unconditionally true in nature. Suppose we have some facts as

given below:

 Tom is a cat

 Kunal loves to eat Pasta

 Hair is black

 Nawaz loves to play games

 Pratyusha is lazy.

So these are some facts, that are unconditionally true. These are actually statements, that

we have to consider as true.

Following are some guidelines to write facts:

 Names of properties/relationships begin with lower case letters.

 The relationship name appears as the first term.

 Objects appear as comma-separated arguments within parentheses.

 A period "." must end a fact.

 Objects also begin with lower case letters. They also can begin with digits (like

1234), and can be strings of characters enclosed in quotes e.g. color(penink, ‘red’).

 phoneno(agnibha, 1122334455). is also called a predicate or clause.

Syntax

The syntax for facts is as follows:

4. Prolog — Basics

 Prolog

 14

relation(object1,object2...).

Example

Following is an example of the above concept:

cat(tom).

loves_to_eat(kunal,pasta).

of_color(hair,black).

loves_to_play_games(nawaz).

lazy(pratyusha).

Rules

We can define rule as an implicit relationship between objects. So facts are conditionally

true. So when one associated condition is true, then the predicate is also true. Suppose

we have some rules as given below:

 Lili is happy if she dances.

 Tom is hungry if he is searching for food.

 Jack and Bili are friends if both of them love to play cricket.

 Ryan will go to play if school is closed, and he is free.

So these are some rules that are conditionally true, so when the right hand side is true,

then the left hand side is also true.

Here the symbol (:-) will be pronounced as “If”, or “is implied by”. This is also known as

neck symbol, the LHS of this symbol is called the Head, and right hand side is called Body.

Here we can use comma (,) which is known as conjunction, and we can also use semicolon,

that is known as disjunction.

Syntax

rule_name(object1, object2, ...) :- fact/rule(object1, object2, ...)

Suppose a clause is like :

P :- Q;R.

This can also be written as

P :- Q.

P :- R.

If one clause is like :

P :- Q,R;S,T,U.

Is understood as

 Prolog

 15

P :- (Q,R);(S,T,U).

Or can also be written as:

P :- Q,R.

P :- S,T,U.

Example

happy(lili) :- dances(lili).

hungry(tom) :- search_for_food(tom).

friends(jack, bili) :- lovesCricket(jack), lovesCricket(bili).

goToPlay(ryan) :- isClosed(school), free(ryan).

Queries

Queries are some questions on the relationships between objects and object properties.

So question can be anything, as given below:

 Is tom a cat?

 Does Kunal love to eat pasta?

 Is Lili happy?

 Will Ryan go to play?

So according to these queries, Logic programming language can find the answer and return

them.

Knowledge Base in Logic Programming

In this section, we will see what knowledge base in logic programming is.

Well, as we know there are three main components in logic programming: Facts, Rules

and Queries. Among these three if we collect the facts and rules as a whole then that

forms a Knowledge Base. So we can say that the knowledge base is a collection of

facts and rules.

Now, we will see how to write some knowledge bases. Suppose we have our very first

knowledge base called KB1. Here in the KB1, we have some facts. The facts are used to

state things, that are unconditionally true of the domain of interest.

Knowledge Base 1

Suppose we have some knowledge, that Priya, Tiyasha, and Jaya are three girls, among

them, Priya can cook. Let’s try to write these facts in a more generic way as shown below:

girl(priya).

girl(tiyasha).

girl(jaya).

can_cook(priya).

 Prolog

 16

Note: Here we have written the name in lowercase letters, because in Prolog, a string

starting with uppercase letter indicates a variable.

Now we can use this knowledge base by posing some queries. “Is priya a girl?”, it will reply

“yes”, “is jamini a girl?” then it will answer “No”, because it does not know who jamini is.

Our next question is “Can Priya cook?”, it will say “yes”, but if we ask the same question

for Jaya, it will say “No”.

Output

GNU Prolog 1.4.5 (64 bits)

Compiled Jul 14 2018, 13:19:42 with x86_64-w64-mingw32-gcc

By Daniel Diaz

Copyright (C) 1999-2018 Daniel Diaz

| ?- change_directory('D:/TP Prolog/Sample_Codes').

yes

| ?- [kb1]

.

compiling D:/TP Prolog/Sample_Codes/kb1.pl for byte code...

D:/TP Prolog/Sample_Codes/kb1.pl compiled, 3 lines read - 489 bytes written, 10

ms

yes

| ?- girl(priya)

.

yes

| ?- girl(jamini).

no

| ?- can_cook(priya).

yes

| ?- can_cook(jaya).

no

| ?-

Knowledge Base 2

 Prolog

 17

Let us see another knowledge base, where we have some rules. Rules contain some

information that are conditionally true about the domain of interest. Suppose our

knowledge base is as follows:

sing_a_song(ananya).

listens_to_music(rohit).

listens_to_music(ananya) :- sing_a_song(ananya).

happy(ananya) :- sing_a_song(ananya).

happy(rohit) :- listens_to_music(rohit).

playes_guitar(rohit) :- listens_to_music(rohit).

So there are some facts and rules given above. The first two are facts, but the rest are

rules. As we know that Ananya sings a song, this implies she also listens to music. So if

we ask “Does Ananya listen to music?”, the answer will be true. Similarly, “is Rohit

happy?”, this will also be true because he listens to music. But if our question is “does

Ananya play guitar?”, then according to the knowledge base, it will say “No”. So these are

some examples of queries based on this Knowledge base.

Output

| ?- [kb2].

compiling D:/TP Prolog/Sample_Codes/kb2.pl for byte code...

D:/TP Prolog/Sample_Codes/kb2.pl compiled, 6 lines read - 1066 bytes written,

15 ms

yes

| ?- happy(rohit).

yes

| ?- sing_a_song(rohit).

no

| ?- sing_a_song(ananya).

yes

| ?- playes_guitar(rohit).

yes

| ?- playes_guitar(ananya).

no

 Prolog

 18

| ?- listens_to_music(ananya).

yes

| ?-

Knowledge Base 3

The facts and rules of Knowledge Base 3 are as follows:

can_cook(priya).

can_cook(jaya).

can_cook(tiyasha).

likes(priya,jaya) :- can_cook(jaya).

likes(priya,tiyasha) :- can_cook(tiyasha).

Suppose we want to see the members who can cook, we can use one variable in our

query. The variables should start with uppercase letters. In the result, it will show one by

one. If we press enter, then it will come out, otherwise if we press semicolon (;), then it

will show the next result.

Let us see one practical demonstration output to understand how it works.

Output

| ?- [kb3].

compiling D:/TP Prolog/Sample_Codes/kb3.pl for byte code...

D:/TP Prolog/Sample_Codes/kb3.pl compiled, 5 lines read - 737 bytes written, 22

ms

warning: D:/TP Prolog/Sample_Codes/kb3.pl:1: redefining procedure can_cook/1

 D:/TP Prolog/Sample_Codes/kb1.pl:4: previous definition

yes

| ?- can_cook(X).

X = priya ? ;

X = jaya ? ;

X = tiyasha

yes

 Prolog

 19

| ?- likes(priya,X).

X = jaya ? ;

X = tiyasha

yes

| ?-

 Prolog

 20

Relationship is one of the main features that we have to properly mention in Prolog. These

relationships can be expressed as facts and rules. After that we will see about the family

relationships, how we can express family based relationships in Prolog, and also see the

recursive relationships of the family.

We will create the knowledge base by creating facts and rules, and play query on them.

Relations in Prolog

In Prolog programs, it specifies relationship between objects and properties of the objects.

Suppose, there’s a statement, “Amit has a bike”, then we are actually declaring the

ownership relationship between two objects — one is Amit and the other is bike.

If we ask a question, “Does Amit own a bike?”, we are actually trying to find out about

one relationship.

There are various kinds of relationships, of which some can be rules as well. A rule can

find out about a relationship even if the relationship is not defined explicitly as a fact.

We can define a brother relationship as follows:

Two person are brothers, if,

 They both are male.

 They have the same parent.

Now consider we have the below phrases:

 parent(sudip, piyus).

 parent(sudip, raj).

 male(piyus).

 male(raj).

 brother(X,Y) :- parent(Z,X), parent(Z,Y),male(X), male(Y)

These clauses can give us the answer that piyus and raj are brothers, but we will get three

pairs of output here. They are: (piyus, piyus), (piyus, raj), (raj, raj). For these pairs, given

conditions are true, but for the pairs (piyus, piyus), (raj, raj), they are not actually

brothers, they are the same persons. So we have to create the clauses properly to form a

relationship.

The revised relationship can be as follows:

A and B are brothers if:

 A and B, both are male

 They have same father

 They have same mother

5. Prolog — Relations

 Prolog

 21

 A and B are not same

Family Relationship in Prolog

Here we will see the family relationship. This is an example of complex relationship that

can be formed using Prolog. We want to make a family tree, and that will be mapped into

facts and rules, then we can run some queries on them.

Suppose the family tree is as follows:

Here from this tree, we can understand that there are few relationships. Here bob is a

child of pam and tom, and bob also has two children — ann and pat. Bob has one brother

liz, whose parent is also tom. So we want to make predicates as follows:

 Prolog

 22

Predicates

 parent(pam, bob).

 parent(tom, bob).

 parent(tom, liz).

 parent(bob, ann).

 parent(bob, pat).

 parent(pat, jim).

 parent(bob, peter).

 parent(peter, jim).

From our example, it has helped to illustrate some important points:

 We have defined parent relation by stating the n-tuples of objects based on the

given info in the family tree.

 The user can easily query the Prolog system about relations defined in the program.

 A Prolog program consists of clauses terminated by a full stop.

 The arguments of relations can (among other things) be: concrete objects, or

constants (such as pat and jim), or general objects such as X and Y. Objects of the

first kind in our program are called atoms. Objects of the second kind are called

variables.

 Questions to the system consist of one or more goals.

Some facts can be written in two different ways, like sex of family members can be written

in either of the forms:

 female(pam).

 male(tom).

 male(bob).

 female(liz).

 female(pat).

 female(ann).

 male(jim).

Or in the below form:

 sex(pam, feminine).

 sex(tom, masculine).

 sex(bob, masculine).

 … and so on.

 Prolog

 23

Now if we want to make mother and sister relationship, then we can write as given below:

In Prolog syntax, we can write:

 mother(X,Y) :- parent(X,Y), female(X).

 sister(X,Y) :- parent(Z,X), parent(Z,Y), female(X), X \== Y.

Now let us see the practical demonstration:

Knowledge Base (family.pl)

female(pam).

female(liz).

female(pat).

female(ann).

male(jim).

male(bob).

male(tom).

male(peter).

parent(pam,bob).

parent(tom,bob).

parent(tom,liz).

parent(bob,ann).

parent(bob,pat).

parent(pat,jim).

parent(bob,peter).

parent(peter,jim).

 Prolog

 24

mother(X,Y):- parent(X,Y),female(X).

father(X,Y):- parent(X,Y),male(X).

haschild(X):- parent(X,_).

sister(X,Y):- parent(Z,X),parent(Z,Y),female(X),X\==Y.

brother(X,Y):-parent(Z,X),parent(Z,Y),male(X),X\==Y.

Output

| ?- [family].

compiling D:/TP Prolog/Sample_Codes/family.pl for byte code...

D:/TP Prolog/Sample_Codes/family.pl compiled, 23 lines read - 3088 bytes

written, 9 ms

yes

| ?- parent(X,jim).

X = pat ? ;

X = peter

yes

| ?-

mother(X,Y).

X = pam

Y = bob ? ;

X = pat

Y = jim ? ;

no

| ?- haschild(X).

X = pam ? ;

X = tom ? ;

 Prolog

 25

X = tom ? ;

X = bob ? ;

X = bob ? ;

X = pat ? ;

X = bob ? ;

X = peter

yes

| ?- sister(X,Y).

X = liz

Y = bob ? ;

X = ann

Y = pat ? ;

X = ann

Y = peter ? ;

X = pat

Y = ann ? ;

X = pat

Y = peter ? ;

(16 ms) no

| ?-

Now let us see some more relationships that we can make from the previous relationships

of a family. So if we want to make a grandparent relationship, that can be formed as

follows:

 Prolog

 26

We can also create some other relationships like wife, uncle, etc. We can write the

relationships as given below:

 grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

 grandmother(X,Z) :- mother(X,Y), parent(Y,Z).

 grandfather(X,Z) :- father(X,Y), parent(Y,Z).

 wife(X,Y) :- parent(X,Z),parent(Y,Z), female(X),male(Y).

 uncle(X,Z) :- brother(X,Y), parent(Y,Z).

So let us write a prolog program to see this in action. Here we will also see the trace to

trace-out the execution.

Knowledge Base (family_ext.pl)

female(pam).

female(liz).

female(pat).

female(ann).

male(jim).

male(bob).

male(tom).

male(peter).

parent(pam,bob).

parent(tom,bob).

parent(tom,liz).

parent(bob,ann).

 Prolog

 27

parent(bob,pat).

parent(pat,jim).

parent(bob,peter).

parent(peter,jim).

mother(X,Y):- parent(X,Y),female(X).

father(X,Y):-parent(X,Y),male(X).

sister(X,Y):-parent(Z,X),parent(Z,Y),female(X),X\==Y.

brother(X,Y):-parent(Z,X),parent(Z,Y),male(X),X\==Y.

grandparent(X,Y):-parent(X,Z),parent(Z,Y).

grandmother(X,Z):-mother(X,Y),parent(Y,Z).

grandfather(X,Z):-father(X,Y),parent(Y,Z).

wife(X,Y):-parent(X,Z),parent(Y,Z),female(X),male(Y).

uncle(X,Z):-brother(X,Y),parent(Y,Z).

Output

| ?- [family_ext].

compiling D:/TP Prolog/Sample_Codes/family_ext.pl for byte code...

D:/TP Prolog/Sample_Codes/family_ext.pl compiled, 27 lines read - 4646 bytes

written, 10 ms

| ?- uncle(X,Y).

X = peter

Y = jim ? ;

no

| ?- grandparent(X,Y).

X = pam

Y = ann ? ;

X = pam

Y = pat ? ;

X = pam

Y = peter ? ;

 Prolog

 28

X = tom

Y = ann ? ;

X = tom

Y = pat ? ;

X = tom

Y = peter ? ;

X = bob

Y = jim ? ;

X = bob

Y = jim ? ;

no

| ?- wife(X,Y).

X = pam

Y = tom ? ;

X = pat

Y = peter ? ;

(15 ms) no

| ?-

 Prolog

 29

Tracing the output

In Prolog we can trace the execution. To trace the output, you have to enter into the trace

mode by typing “trace.”. Then from the output we can see that we are just tracing “pam

is mother of whom?”. See the tracing output by taking X = pam, and Y as variable, there

Y will be bob as answer. To come out from the tracing mode press “notrace.”

Program

| ?- [family_ext].

compiling D:/TP Prolog/Sample_Codes/family_ext.pl for byte code...

D:/TP Prolog/Sample_Codes/family_ext.pl compiled, 27 lines read - 4646 bytes

written, 10 ms

(16 ms) yes

| ?- mother(X,Y).

X = pam

Y = bob ? ;

X = pat

Y = jim ? ;

no

| ?- trace.

The debugger will first creep -- showing everything (trace)

yes

{trace}

| ?- mother(pam,Y).

 1 1 Call: mother(pam,_23) ?

 2 2 Call: parent(pam,_23) ?

 2 2 Exit: parent(pam,bob) ?

 3 2 Call: female(pam) ?

 3 2 Exit: female(pam) ?

 1 1 Exit: mother(pam,bob) ?

Y = bob

(16 ms) yes

 Prolog

 30

{trace}

| ?- notrace.

The debugger is switched off

yes

| ?-

Recursion in Family Relationship

In the previous section, we have seen that we can define some family relationships. These

relationships are static in nature. We can also create some recursive relationships which

can be expressed from the following illustration:

 Prolog

 31

So we can understand that predecessor relationship is recursive. We can express this

relationship using the following syntax:

predecessor(X, Z) :- parent(X, Z).

predecessor(X, Z) :- parent(X, Y),predecessor(Y, Z).

Now let us see the practical demonstration.

Knowledge Base (family_rec.pl)

female(pam).

female(liz).

female(pat).

female(ann).

male(jim).

male(bob).

male(tom).

male(peter).

parent(pam,bob).

parent(tom,bob).

parent(tom,liz).

parent(bob,ann).

 Prolog

 32

parent(bob,pat).

parent(pat,jim).

parent(bob,peter).

parent(peter,jim).

predecessor(X, Z) :- parent(X, Z).

predecessor(X, Z) :- parent(X, Y),predecessor(Y, Z).

Output

| ?- [family_rec].

compiling D:/TP Prolog/Sample_Codes/family_rec.pl for byte code...

D:/TP Prolog/Sample_Codes/family_rec.pl compiled, 21 lines read - 1851 bytes

written, 14 ms

yes

| ?- predecessor(peter,X).

X = jim ? ;

no

| ?- trace.

The debugger will first creep -- showing everything (trace)

yes

{trace}

| ?- predecessor(bob,X).

 1 1 Call: predecessor(bob,_23) ?

 2 2 Call: parent(bob,_23) ?

 2 2 Exit: parent(bob,ann) ?

 1 1 Exit: predecessor(bob,ann) ?

X = ann ? ;

 1 1 Redo: predecessor(bob,ann) ?

 2 2 Redo: parent(bob,ann) ?

 Prolog

 33

 2 2 Exit: parent(bob,pat) ?

 1 1 Exit: predecessor(bob,pat) ?

X = pat ? ;

 1 1 Redo: predecessor(bob,pat) ?

 2 2 Redo: parent(bob,pat) ?

 2 2 Exit: parent(bob,peter) ?

 1 1 Exit: predecessor(bob,peter) ?

X = peter ? ;

 1 1 Redo: predecessor(bob,peter) ?

 2 2 Call: parent(bob,_92) ?

 2 2 Exit: parent(bob,ann) ?

 3 2 Call: predecessor(ann,_23) ?

 4 3 Call: parent(ann,_23) ?

 4 3 Fail: parent(ann,_23) ?

 4 3 Call: parent(ann,_141) ?

 4 3 Fail: parent(ann,_129) ?

 3 2 Fail: predecessor(ann,_23) ?

 2 2 Redo: parent(bob,ann) ?

 2 2 Exit: parent(bob,pat) ?

 3 2 Call: predecessor(pat,_23) ?

 4 3 Call: parent(pat,_23) ?

 4 3 Exit: parent(pat,jim) ?

 3 2 Exit: predecessor(pat,jim) ?

 1 1 Exit: predecessor(bob,jim) ?

X = jim ? ;

 1 1 Redo: predecessor(bob,jim) ?

 3 2 Redo: predecessor(pat,jim) ?

 4 3 Call: parent(pat,_141) ?

 4 3 Exit: parent(pat,jim) ?

 5 3 Call: predecessor(jim,_23) ?

 Prolog

 34

 6 4 Call: parent(jim,_23) ?

 6 4 Fail: parent(jim,_23) ?

 6 4 Call: parent(jim,_190) ?

 6 4 Fail: parent(jim,_178) ?

 5 3 Fail: predecessor(jim,_23) ?

 3 2 Fail: predecessor(pat,_23) ?

 2 2 Redo: parent(bob,pat) ?

 2 2 Exit: parent(bob,peter) ?

 3 2 Call: predecessor(peter,_23) ?

 4 3 Call: parent(peter,_23) ?

 4 3 Exit: parent(peter,jim) ?

 3 2 Exit: predecessor(peter,jim) ?

 1 1 Exit: predecessor(bob,jim) ?

X = jim ?

(78 ms) yes

{trace}

| ?-

 Prolog

 35

In this chapter, we will learn data objects in Prolog. They can be divided into few different

categories as shown below:

Below are some examples of different kinds of data objects:

 Atoms: tom, pat, x100, x_45

 Numbers: 100, 1235, 2000.45

 Variables: X, Y, Xval, _X

 Structures: day(9, jun, 2017), point(10, 25)

6. Prolog — Data Objects

 Prolog

 36

Atoms and Variables

In this section, we will discuss the atoms, numbers and the variables of Prolog.

Atoms

Atoms are one variation of constants. They can be any names or objects. There are few

rules that should be followed when we are trying to use Atoms as given below:

Strings of letters, digits and the underscore character, ‘_', starting with a lower-

case letter. For example:

 azahar

 b59

 b_59

 b_59AB

 b_x25

 antara_sarkar

Strings of special characters

We have to keep in mind that when using atoms of this form, some care is necessary as

some strings of special characters already have a predefined meaning; for example ':-'.

 <--->

 =======>

 ...

 .:.

 ::=

Strings of characters enclosed in single quotes.

This is useful if we want to have an atom that starts with a capital letter. By enclosing it

in quotes, we make it distinguishable from variables:

 ‘Rubai'

 ‘Arindam_Chatterjee'

 ‘Sumit Mitra'

Numbers

Another variation of constants is the Numbers. So integer numbers can be represented as

100, 4, -81, 1202. In Prolog, the normal range of integers is from -16383 to 16383.

Prolog also supports real numbers, but normally the use-case of floating point number is

very less in Prolog programs, because Prolog is for symbolic, non-numeric computation.

The treatment of real numbers depends on the implementation of Prolog. Example of real

numbers are 3.14159, -0.00062, 450.18, etc.

Variables

 Prolog

 37

The variables come under the Simple Objects section. Variables can be used in many

such cases in our Prolog program, that we have seen earlier. So there are some rules of

defining variables in Prolog.

We can define Prolog variables, such that variables are strings of letters, digits and

underscore characters. They start with an upper-case letter or an underscore

character. Some examples of Variables are:

 X

 Sum

 Memer_name

 Student_list

 Shoppinglist

 _a50

 _15

Anonymous Variables in Prolog

Anonymous variables have no names. The anonymous variables in prolog is written by a

single underscore character ‘_’. And one important thing is that each individual

anonymous variable is treated as different. They are not same.

Now the question is, where should we use these anonymous variables?

Suppose in our knowledge base we have some facts — “jim hates tom”, “pat hates bob”.

So if tom wants to find out who hates him, then he can use variables. However, if he wants

to check whether there is someone who hates him, we can use anonymous variables. So

when we want to use the variable, but do not want to reveal the value of the variable,

then we can use anonymous variables.

So let us see its practical implementation:

Knowledge Base (var_anonymous.pl)

hates(jim,tom).

hates(pat,bob).

hates(dog,fox).

hates(peter,tom).

Output

| ?- [var_anonymous].

compiling D:/TP Prolog/Sample_Codes/var_anonymous.pl for byte code...

D:/TP Prolog/Sample_Codes/var_anonymous.pl compiled, 3 lines read - 536 bytes

written, 16 ms

yes

| ?- hates(X,tom).

 Prolog

 38

X = jim ? ;

X = peter

yes

| ?- hates(_,tom).

true ? ;

(16 ms) yes

| ?- hates(_,pat).

no

| ?- hates(_,fox).

true ? ;

no

| ?-

 Prolog

 39

In the following sections, we will see what are the different types of operators in Prolog.

Types of the comparison operators and Arithmetic operators.

We will also see how these are different from any other high level language operators,

how they are syntactically different, and how they are different in their work. Also we will

see some practical demonstration to understand the usage of different operators.

Comparison Operators

Comparison operators are used to compare two equations or states. Following are different

comparison operators:

Operator Meaning

X > Y X is greater than Y

X < Y X is less than Y

X >= Y X is greater than or equal to Y

X =< Y X is less than or equal to Y

X =:= Y the X and Y values are equal

X =\= Y the X and Y values are not equal

You can see that the ‘=<’ operator, ‘=:=’ operator and ‘=\=’ operators are syntactically

different from other languages. Let us see some practical demonstration to this.

Example

| ?- 1+2=:=2+1.

yes

| ?- 1+2=2+1.

no

| ?- 1+A=B+2.

A = 2

B = 1

yes

7. Prolog — Operators

 Prolog

 40

| ?- 5<10.

yes

| ?- 5>10.

no

| ?- 10=\=100.

yes

Here we can see 1+2=:=2+1 is returning true, but 1+2=2+1 is returning false. This is

because, in the first case it is checking whether the value of 1 + 2 is same as 2 + 1 or

not, and the other one is checking whether two patterns ‘1+2’ and ‘2+1’ are same or not.

As they are not same, it returns no (false). In the case of 1+A=B+2, A and B are two

variables, and they are automatically assigned to some values that will match the pattern.

Arithmetic Operators in Prolog

Arithmetic operators are used to perform arithmetic operations. There are few different

types of arithmetic operators as follows:

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Power

// Integer Division

mod Modulus

Let us see one practical code to understand the usage of these operators.

Program

calc :- X is 100 + 200,write('100 + 200 is '),write(X),nl,

 Y is 400 - 150,write('400 - 150 is '),write(Y),nl,

 Z is 10 * 300,write('10 * 300 is '),write(Z),nl,

 A is 100 / 30,write('100 / 30 is '),write(A),nl,

 B is 100 // 30,write('100 // 30 is '),write(B),nl,

 C is 100 ** 2,write('100 ** 2 is '),write(C),nl,

 Prolog

 41

 D is 100 mod 30,write('100 mod 30 is '),write(D),nl.

Note: The nl is used to create new line.

Output

| ?- change_directory('D:/TP Prolog/Sample_Codes').

yes

| ?- [op_arith].

compiling D:/TP Prolog/Sample_Codes/op_arith.pl for byte code...

D:/TP Prolog/Sample_Codes/op_arith.pl compiled, 6 lines read - 2390 bytes

written, 11 ms

yes

| ?- calc.

100 + 200 is 300

400 - 150 is 250

10 * 300 is 3000

100 / 30 is 3.3333333333333335

100 // 30 is 3

100 ** 2 is 10000.0

100 mod 30 is 10

yes

| ?-

 Prolog

 42

In this chapter, we will discuss loops and decision making in Prolog.

Loops

Loop statements are used to execute the code block multiple times. In general, for, while,

do-while are loop constructs in programming languages (like Java, C, C++).

Code block is executed multiple times using recursive predicate logic. There are no direct

loops in some other languages, but we can simulate loops with few different techniques.

Program

count_to_10(10) :- write(10),nl.

count_to_10(X) :-

 write(X),nl,

 Y is X + 1,

 count_to_10(Y).

Output

| ?- [loop].

compiling D:/TP Prolog/Sample_Codes/loop.pl for byte code...

D:/TP Prolog/Sample_Codes/loop.pl compiled, 4 lines read - 751 bytes written,

16 ms

(16 ms) yes

| ?- count_to_10(3).

3

4

5

6

7

8

9

10

true ?

8. Prolog — Loop & Decision Making

 Prolog

 43

yes

| ?-

Now create a loop that takes lowest and highest values. So, we can use the between() to

simulate loops.

Program

Let us see an example program:

count_down(L, H) :-

 between(L, H, Y),

 Z is H - Y,

 write(Z), nl.

count_up(L, H) :-

 between(L, H, Y),

 Z is L + Y,

 write(Z), nl.

Output

| ?- [loop].

compiling D:/TP Prolog/Sample_Codes/loop.pl for byte code...

D:/TP Prolog/Sample_Codes/loop.pl compiled, 14 lines read - 1700 bytes written,

16 ms

yes

| ?- count_down(12,17).

5

true ? ;

4

true ? ;

3

true ? ;

2

true ? ;

 Prolog

 44

1

true ? ;

0

yes

| ?- count_up(5,12).

10

true ? ;

11

true ? ;

12

true ? ;

13

true ? ;

14

true ? ;

15

true ? ;

16

true ? ;

17

yes

| ?-

 Prolog

 45

Decision Making

The decision statements are If-Then-Else statements. So when we try to match some

condition, and perform some task, then we use the decision making statements. The basic

usage is as follows:

If <condition> is true, Then <do this>, Else <do this>

In some different programming languages, there are If-Else statements, but in Prolog we

have to define our statements in some other manner. Following is an example of decision

making in Prolog.

Program

% If-Then-Else statement

gt(X,Y) :- X >= Y,write('X is greater or equal').

gt(X,Y) :- X < Y,write('X is smaller').

% If-Elif-Else statement

gte(X,Y) :- X > Y,write('X is greater').

gte(X,Y) :- X =:= Y,write('X and Y are same').

gte(X,Y) :- X < Y,write('X is smaller').

Output

| ?- [test].

compiling D:/TP Prolog/Sample_Codes/test.pl for byte code...

D:/TP Prolog/Sample_Codes/test.pl compiled, 3 lines read - 529 bytes written,

15 ms

yes

| ?- gt(10,100).

X is smaller

yes

| ?- gt(150,100).

X is greater or equal

true ?

yes

 Prolog

 46

| ?- gte(10,20).

X is smaller

(15 ms) yes

| ?- gte(100,20).

X is greater

true ?

yes

| ?- gte(100,100).

X and Y are same

true ?

yes

| ?-

 Prolog

 47

In this chapter, we shall discuss Conjunction and Disjunction properties. These properties

are used in other programming languages using AND and OR logics. Prolog also uses the

same logic in its syntax.

Conjunction

Conjunction (AND logic) can be implemented using the comma (,) operator. So two

predicates separated by comma are joined with AND statement. Suppose we have a

predicate, parent(jhon, bob), which means “Jhon is parent of Bob”, and another

predicate, male(jhon), which means “Jhon is male”. So we can make another predicate

that father(jhon,bob), which means “Jhon is father of Bob”. We can define predicate

father, when he is parent AND he is male.

Disjunction

Disjunction (OR logic) can be implemented using the semi-colon (;) operator. So two

predicates separated by semi-colon are joined with OR statement. Suppose we have a

predicate, father(jhon, bob). This tells that “Jhon is father of Bob”, and another

predicate, mother(lili,bob), this tells that “lili is mother of bob”. If we create another

predicate as child(), this will be true when father(jhon, bob) is true OR

mother(lili,bob) is true.

Program

parent(jhon,bob).

parent(lili,bob).

male(jhon).

female(lili).

% Conjunction Logic

father(X,Y) :- parent(X,Y),male(X).

mother(X,Y) :- parent(X,Y),female(X).

% Disjunction Logic

child_of(X,Y) :- father(X,Y);mother(X,Y).

Output

| ?- [conj_disj].

compiling D:/TP Prolog/Sample_Codes/conj_disj.pl for byte code...

9. Prolog — Conjunctions & Disjunctions

 Prolog

 48

D:/TP Prolog/Sample_Codes/conj_disj.pl compiled, 11 lines read - 1513 bytes

written, 24 ms

yes

| ?- father(jhon,bob).

yes

| ?- child_of(jhon,bob).

true ?

yes

| ?- child_of(lili,bob).

yes

| ?-

 Prolog

 49

In this chapter, we will discuss one of the important concepts in Prolog, The Lists. It is a

data structure that can be used in different cases for non-numeric programming. Lists are

used to store the atoms as a collection.

In the subsequent sections, we will discuss the following topics:

 Representation of lists in Prolog

 Basic operations on prolog such as Insert, delete, update, append.

 Repositioning operators such as permutation, combination, etc.

 Set operations like set union, set intersection, etc.

Representation of Lists

The list is a simple data structure that is widely used in non-numeric programming. List

consists of any number of items, for example, red, green, blue, white, dark. It will be

represented as, [red, green, blue, white, dark]. The list of elements will be enclosed with

square brackets.

A list can be either empty or non-empty. In the first case, the list is simply written as a

Prolog atom, []. In the second case, the list consists of two things as given below:

 The first item, called the head of the list;

 The remaining part of the list, called the tail.

Suppose we have a list like: [red, green, blue, white, dark]. Here the head is red and tail

is [green, blue, white, dark]. So the tail is another list.

Now, let us consider we have a list, L = [a, b, c]. If we write Tail = [b, c] then we can also

write the list L as L = [a | Tail]. Here the vertical bar (|) separates the head and tail parts.

So the following list representations are also valid:

 [a, b, c] = [x | [b, c]]

 [a, b, c] = [a, b | [c]]

 [a, b, c] = [a, b, c | []]

For these properties we can define the list as:

A data structure that is either empty or consists of two parts: a head and a tail. The tail

itself has to be a list.

Basic Operations on Lists

Following table contains various operations on prolog lists:

10. Prolog — Lists

 Prolog

 50

Operations Definition

Membership Checking

During this operation, we can verify

whether a given element is member of

specified list or not?

Length Calculation

With this operation, we can find the

length of a list.

Concatenation

Concatenation is an operation which is

used to join/add two lists.

Delete Items

This operation removes the specified

element from a list.

Append Items

Append operation adds one list into

another (as an item).

Insert Items

This operation inserts a given item into a

list.

Membership Operation

During this operation, we can check whether a member X is present in list L or not? So

how to check this? Well, we have to define one predicate to do so. Suppose the predicate

name is list_member(X,L). The goal of this predicate is to check whether X is present in

L or not.

To design this predicate, we can follow these observations. X is a member of L if either:

 X is head of L, or

 X is a member of the tail of L

Program

list_member(X,[X|_]).

list_member(X,[_|TAIL]) :- list_member(X,TAIL).

Output

| ?- [list_basics].

compiling D:/TP Prolog/Sample_Codes/list_basics.pl for byte code...

D:/TP Prolog/Sample_Codes/list_basics.pl compiled, 1 lines read - 467 bytes

written, 13 ms

yes

 Prolog

 51

| ?- list_member(b,[a,b,c]).

true ?

yes

| ?- list_member(b,[a,[b,c]]).

no

| ?- list_member([b,c],[a,[b,c]]).

true ?

yes

| ?- list_member(d,[a,b,c]).

no

| ?- list_member(d,[a,b,c]).

Length Calculation

This is used to find the length of list L. We will define one predicate to do this task. Suppose

the predicate name is list_length(L,N). This takes L and N as input argument. This will

count the elements in a list L and instantiate N to their number. As was the case with our

previous relations involving lists, it is useful to consider two cases:

 If list is empty, then length is 0.

 If the list is not empty, then L = [Head|Tail], then its length is 1 + length of Tail.

Program

list_length([],0).

list_length([_|TAIL],N) :- list_length(TAIL,N1), N is N1 + 1.

Output

| ?- [list_basics].

compiling D:/TP Prolog/Sample_Codes/list_basics.pl for byte code...

D:/TP Prolog/Sample_Codes/list_basics.pl compiled, 4 lines read - 985 bytes

written, 23 ms

yes

| ?- list_length([a,b,c,d,e,f,g,h,i,j],Len).

 Prolog

 52

Len = 10

yes

| ?- list_length([],Len).

Len = 0

yes

| ?- list_length([[a,b],[c,d],[e,f]],Len).

Len = 3

yes

| ?-

Concatenation

Concatenation of two lists means adding the list items of the second list after the first one.

So if two lists are [a,b,c] and [1,2], then the final list will be [a,b,c,1,2]. So to do this task

we will create one predicate called list_concat(), that will take first list L1, second list L2,

and the L3 as resultant list. There are two observations here.

 If the first list is empty, and second list is L, then the resultant list will be L.

 If the first list is not empty, then write this as [Head|Tail], concatenate Tail with L2

recursively, and store into new list in the form, [Head|New List].

Program

list_concat([],L,L).

list_concat([X1|L1],L2,[X1|L3]) :- list_concat(L1,L2,L3).

Output

| ?- [list_basics].

compiling D:/TP Prolog/Sample_Codes/list_basics.pl for byte code...

D:/TP Prolog/Sample_Codes/list_basics.pl compiled, 7 lines read - 1367 bytes

written, 19 ms

yes

| ?- list_concat([1,2],[a,b,c],NewList).

 Prolog

 53

NewList = [1,2,a,b,c]

yes

| ?- list_concat([],[a,b,c],NewList).

NewList = [a,b,c]

yes

| ?- list_concat([[1,2,3],[p,q,r]],[a,b,c],NewList).

NewList = [[1,2,3],[p,q,r],a,b,c]

yes

| ?-

Delete from List

Suppose we have a list L and an element X, we have to delete X from L. So there are three

cases:

 If X is the only element, then after deleting it, it will return empty list.

 If X is head of L, the resultant list will be the Tail part.

 If X is present in the Tail part, then delete from there recursively.

Program

list_delete(X, [X], []).

list_delete(X,[X|L1], L1).

list_delete(X, [Y|L2], [Y|L1]) :- list_delete(X,L2,L1).

Output

| ?- [list_basics].

compiling D:/TP Prolog/Sample_Codes/list_basics.pl for byte code...

D:/TP Prolog/Sample_Codes/list_basics.pl compiled, 11 lines read - 1923 bytes

written, 25 ms

yes

| ?- list_delete(a,[a,e,i,o,u],NewList).

 Prolog

 54

NewList = [e,i,o,u] ?

yes

| ?- list_delete(a,[a],NewList).

NewList = [] ?

yes

| ?- list_delete(X,[a,e,i,o,u],[a,e,o,u]).

X = i ? ;

no

| ?-

Append into List

Appending two lists means adding two lists together, or adding one list as an item. Now if

the item is present in the list, then the append function will not work. So we will create

one predicate namely, list_append(L1, L2, L3). The following are some observations:

 Let A is an element, L1 is a list, the output will be L1 also, when L1 has A already.

 Otherwise new list will be L2 = [A|L1].

Program

list_member(X,[X|_]).

list_member(X,[_|TAIL]) :- list_member(X,TAIL).

list_append(A,T,T) :- list_member(A,T),!.

list_append(A,T,[A|T]).

In this case, we have used (!) symbol, that is known as cut. So when the first line is

executed successfully, then we cut it, so it will not execute the next operation.

Output

| ?- [list_basics].

compiling D:/TP Prolog/Sample_Codes/list_basics.pl for byte code...

D:/TP Prolog/Sample_Codes/list_basics.pl compiled, 14 lines read - 2334 bytes

written, 25 ms

(16 ms) yes

 Prolog

 55

| ?- list_append(a,[e,i,o,u],NewList).

NewList = [a,e,i,o,u]

yes

| ?- list_append(e,[e,i,o,u],NewList).

NewList = [e,i,o,u]

yes

| ?- list_append([a,b],[e,i,o,u],NewList).

NewList = [[a,b],e,i,o,u]

yes

| ?-

Insert into List

This method is used to insert an item X into list L, and the resultant list will be R. So the

predicate will be in this form list_insert(X, L, R). So this can insert X into L in all possible

positions. If we see closer, then there are some observations.

 If we perform list_insert(X,L,R), we can use list_delete(X,R,L), so delete X from R

and make new list L.

Program

list_delete(X, [X], []).

list_delete(X,[X|L1], L1).

list_delete(X, [Y|L2], [Y|L1]) :- list_delete(X,L2,L1).

list_insert(X,L,R) :- list_delete(X,R,L).

Output

| ?- [list_basics].

compiling D:/TP Prolog/Sample_Codes/list_basics.pl for byte code...

D:/TP Prolog/Sample_Codes/list_basics.pl compiled, 16 lines read - 2558 bytes

written, 22 ms

(16 ms) yes

 Prolog

 56

| ?- list_insert(a,[e,i,o,u],NewList).

NewList = [a,e,i,o,u] ? a

NewList = [e,a,i,o,u]

NewList = [e,i,a,o,u]

NewList = [e,i,o,a,u]

NewList = [e,i,o,u,a]

NewList = [e,i,o,u,a]

(15 ms) no

| ?-

Repositioning operations of list items

Following are repositioning operations:

Repositioning Operations Definition

Permutation This operation will change the list item

positions and generate all possible

outcomes.

Reverse Items This operation arranges the items of a list

in reverse order.

Shift Items This operation will shift one element of a

list to the left rotationally.

Order Items This operation verifies whether the given

list is ordered or not.

Permutation Operation

This operation will change the list item positions and generate all possible outcomes. So

we will create one predicate as list_perm(L1,L2), This will generate all permutation of L1,

and store them into L2. To do this we need list_delete() clause to help.

To design this predicate, we can follow few observations as given below:

X is member of L if either:

 Prolog

 57

 If the first list is empty, then the second list must also be empty.

 If the first list is not empty then it has the form [X | L], and a permutation of such

a list can be constructed as, first permute L obtaining L1 and then insert X at any

position into L1.

Program

list_delete(X,[X|L1], L1).

list_delete(X, [Y|L2], [Y|L1]) :- list_delete(X,L2,L1).

list_perm([],[]).

list_perm(L,[X|P]) :- list_delete(X,L,L1),list_perm(L1,P).

Output

| ?- [list_repos].

compiling D:/TP Prolog/Sample_Codes/list_repos.pl for byte code...

D:/TP Prolog/Sample_Codes/list_repos.pl compiled, 4 lines read - 1060 bytes

written, 17 ms

(15 ms) yes

| ?- list_perm([a,b,c,d],X).

X = [a,b,c,d] ? a

X = [a,b,d,c]

X = [a,c,b,d]

X = [a,c,d,b]

X = [a,d,b,c]

X = [a,d,c,b]

X = [b,a,c,d]

X = [b,a,d,c]

X = [b,c,a,d]

 Prolog

 58

X = [b,c,d,a]

X = [b,d,a,c]

X = [b,d,c,a]

X = [c,a,b,d]

X = [c,a,d,b]

X = [c,b,a,d]

X = [c,b,d,a]

X = [c,d,a,b]

X = [c,d,b,a]

X = [d,a,b,c]

X = [d,a,c,b]

X = [d,b,a,c]

X = [d,b,c,a]

X = [d,c,a,b]

X = [d,c,b,a]

(31 ms) no

| ?-

 Prolog

 59

Reverse Operation

Suppose we have a list L = [a,b,c,d,e], and we want to reverse the elements, so the output

will be [e,d,c,b,a]. To do this, we will create a clause, list_reverse(List, ReversedList).

Following are some observations:

 If the list is empty, then the resultant list will also be empty.

 Otherwise put the list items namely, [Head|Tail], and reverse the Tail items

recursively, and concatenate with the Head.

 This can also be used to check whether two lists are reverse of each other or not.

Program

list_concat([],L,L).

list_concat([X1|L1],L2,[X1|L3]) :- list_concat(L1,L2,L3).

list_rev([],[]).

list_rev([Head|Tail],Reversed) :-

 list_rev(Tail, RevTail),list_concat(RevTail, [Head],Reversed).

Output

| ?- [list_repos].

compiling D:/TP Prolog/Sample_Codes/list_repos.pl for byte code...

D:/TP Prolog/Sample_Codes/list_repos.pl compiled, 10 lines read - 1977 bytes

written, 19 ms

yes

| ?- list_rev([a,b,c,d,e],NewList).

NewList = [e,d,c,b,a]

yes

| ?- list_rev([a,b,c,d,e],[e,d,c,b,a]).

yes

| ?-

Shift Operation

Using Shift operation, we can shift one element of a list to the left rotationally. So if the

list items are [a,b,c,d], then after shifting, it will be [b,c,d,a]. So we will make a clause

list_shift(L1, L2).

 Prolog

 60

 We will express the list as [Head|Tail], then recursively concatenate Head after the

Tail, so as a result we can feel that the elements are shifted.

 This can also be used to check whether the two lists are shifted at one position or

not.

Program

list_concat([],L,L).

list_concat([X1|L1],L2,[X1|L3]) :- list_concat(L1,L2,L3).

list_shift([Head|Tail],Shifted) :- list_concat(Tail, [Head],Shifted).

Output

| ?- [list_repos].

compiling D:/TP Prolog/Sample_Codes/list_repos.pl for byte code...

D:/TP Prolog/Sample_Codes/list_repos.pl compiled, 12 lines read - 2287 bytes

written, 10 ms

yes

| ?- list_shift([a,b,c,d,e],L2).

L2 = [b,c,d,e,a]

(16 ms) yes

| ?- list_shift([a,b,c,d,e],[b,c,d,e,a]).

yes

| ?-

Order Operation

Here we will define a predicate list_order(L) which checks whether L is ordered or not. So

if L = [1,2,3,4,5,6], then the result will be true.

 If there is only one element, that is already ordered.

 Otherwise take first two elements X and Y as Head, and rest as Tail. If X =< Y,

then call the clause again with the parameter [Y|Tail], so this will recursively check

from the next element.

Program

list_order([X]).

 Prolog

 61

list_order([X, Y | Tail]) :- X =< Y, list_order([Y|Tail]).

Output

| ?- [list_repos].

compiling D:/TP Prolog/Sample_Codes/list_repos.pl for byte code...

D:/TP Prolog/Sample_Codes/list_repos.pl:15: warning: singleton variables [X]

for list_order/1

D:/TP Prolog/Sample_Codes/list_repos.pl compiled, 15 lines read - 2805 bytes

written, 18 ms

yes

| ?- list_order([1,2,3,4,5,6,6,7,7,8]).

true ?

yes

| ?- list_order([1,4,2,3,6,5]).

no

| ?-

Set operations on lists

Following are the set operations:

Set operations Definition

Subset Finding Retrieves all the possible subsets of a given

list.

Union of two sets Performs “union” on the given lists.

Intersection of two sets Performs “Intersection” on the given lists.

Subset Finding Operation

We will try to write a clause that will get all possible subsets of a given set. So if the set

is [a,b], then the result will be [], [a], [b], [a,b]. To do so, we will create one clause,

list_subset(L, X). It will take L and return each subsets into X. So we will proceed in the

following way:

 If list is empty, the subset is also empty.

 Find the subset recursively by retaining the Head, and

 Make another recursive call where we will remove Head.

 Prolog

 62

Program

list_subset([],[]).

list_subset([Head|Tail],[Head|Subset]) :- list_subset(Tail,Subset).

list_subset([Head|Tail],Subset) :- list_subset(Tail,Subset).

Output

| ?- [list_set].

compiling D:/TP Prolog/Sample_Codes/list_set.pl for byte code...

D:/TP Prolog/Sample_Codes/list_set.pl:3: warning: singleton variables [Head]

for list_subset/2

D:/TP Prolog/Sample_Codes/list_set.pl compiled, 2 lines read - 653 bytes

written, 7 ms

yes

| ?- list_subset([a,b],X).

X = [a,b] ? ;

X = [a] ? ;

X = [b] ? ;

X = []

(15 ms) yes

| ?- list_subset([x,y,z],X).

X = [x,y,z] ? a

X = [x,y]

X = [x,z]

X = [x]

X = [y,z]

 Prolog

 63

X = [y]

X = [z]

X = []

yes

| ?-

Union Operation

Let us define a clause called list_union(L1,L2,L3), So this will take L1 and L2, and perform

Union on them, and store the result into L3. As you know if two lists have the same element

twice, then after union, there will be only one. So we need another helper clause to check

the membership.

Program

list_member(X,[X|_]).

list_member(X,[_|TAIL]) :- list_member(X,TAIL).

list_union([X|Y],Z,W) :- list_member(X,Z),list_union(Y,Z,W).

list_union([X|Y],Z,[X|W]) :- \+ list_member(X,Z), list_union(Y,Z,W).

list_union([],Z,Z).

Note: In the program, we have used (\+) operator, this operator is used for NOT.

Output

| ?- [list_set].

compiling D:/TP Prolog/Sample_Codes/list_set.pl for byte code...

D:/TP Prolog/Sample_Codes/list_set.pl:6: warning: singleton variables [Head]

for list_subset/2

D:/TP Prolog/Sample_Codes/list_set.pl compiled, 9 lines read - 2004 bytes

written, 18 ms

yes

| ?- list_union([a,b,c,d,e],[a,e,i,o,u],L3).

L3 = [b,c,d,a,e,i,o,u] ?

(16 ms) yes

 Prolog

 64

| ?- list_union([a,b,c,d,e],[1,2],L3).

L3 = [a,b,c,d,e,1,2]

yes

Intersection Operation

Let us define a clause called list_intersection(L1,L2,L3), So this will take L1 and L2, and

perform Intersection operation, and store the result into L3. Intersection will return those

elements that are present in both lists. So L1 = [a,b,c,d,e], L2 = [a,e,i,o,u], then L3 =

[a,e]. Here, we will use the list_member() clause to check if one element is present in a

list or not.

Program

list_member(X,[X|_]).

list_member(X,[_|TAIL]) :- list_member(X,TAIL).

list_intersect([X|Y],Z,[X|W]) :-

 list_member(X,Z), list_intersect(Y,Z,W).

list_intersect([X|Y],Z,W) :-

 \+ list_member(X,Z), list_intersect(Y,Z,W).

list_intersect([],Z,[]).

Output

| ?- [list_set].

compiling D:/TP Prolog/Sample_Codes/list_set.pl for byte code...

D:/TP Prolog/Sample_Codes/list_set.pl compiled, 13 lines read - 3054 bytes

written, 9 ms

(15 ms) yes

| ?- list_intersect([a,b,c,d,e],[a,e,i,o,u],L3).

L3 = [a,e] ?

yes

| ?- list_intersect([a,b,c,d,e],[],L3).

L3 = []

 Prolog

 65

yes

| ?-

Misc Operations on Lists

Following are some miscellaneous operations that can be performed on lists:

Misc Operations Definition

Even and Odd Length Finding

Verifies whether the list has odd number or

even number of elements.

Divide Divides a list into two lists, and these lists

are of approximately same length.

Max Retrieves the element with maximum

value from the given list.

Sum Returns the sum of elements of the given

list.

Merge Sort Arranges the elements of a given list in

order (using Merge Sort algorithm).

Even and Odd Length Operation

In this example, we will see two operations using which we can check whether the list has

odd number of elements or the even number of elements. We will define predicates

namely, list_even_len(L) and list_odd_len(L).

 If the list has no elements, then that is even length list.

 Otherwise we take it as [Head|Tail], then if Tail is of odd length, then the total list

is even length string.

 Similarly, if the list has only one element, then that is odd length list.

 By taking it as [Head|Tail] and Tail is even length string, then entire list is odd

length list.

Program

list_even_len([]).

list_even_len([Head|Tail]) :- list_odd_len(Tail).

list_odd_len([_]).

 Prolog

 66

list_odd_len([Head|Tail]) :- list_even_len(Tail).

Output

| ?- [list_misc].

compiling D:/TP Prolog/Sample_Codes/list_misc.pl for byte code...

D:/TP Prolog/Sample_Codes/list_misc.pl:2: warning: singleton variables [Head]

for list_even_len/1

D:/TP Prolog/Sample_Codes/list_misc.pl:5: warning: singleton variables [Head]

for list_odd_len/1

D:/TP Prolog/Sample_Codes/list_misc.pl compiled, 4 lines read - 726 bytes

written, 20 ms

yes

| ?- list_odd_len([a,2,b,3,c]).

true ?

yes

| ?- list_odd_len([a,2,b,3]).

no

| ?- list_even_len([a,2,b,3]).

true ?

yes

| ?- list_even_len([a,2,b,3,c]).

no

| ?-

Divide List Operation

This operation divides a list into two lists, and these lists are of approximately same length.

So if the given list is [a,b,c,d,e], then the result will be [a,c,e],[b,d]. This will place all of

the odd placed elements into one list, and all even placed elements into another list. We

will define a predicate, list_divide(L1,L2,L3) to solve this task.

 If given list is empty, then it will return empty lists.

 Prolog

 67

 If there is only one element, then the first list will be a list with that element, and

the second list will be empty.

 Suppose X,Y are two elements from head, and rest are Tail, So make two lists

[X|List1], [Y|List2], these List1 and List2 are separated by dividing Tail.

Program

list_divide([],[],[]).

list_divide([X],[X],[]).

list_divide([X,Y|Tail], [X|List1],[Y|List2]) :-

 list_divide(Tail,List1,List2).

Output

| ?- [list_misc].

compiling D:/TP Prolog/Sample_Codes/list_misc.pl for byte code...

D:/TP Prolog/Sample_Codes/list_misc.pl:2: warning: singleton variables [Head]

for list_even_len/1

D:/TP Prolog/Sample_Codes/list_misc.pl:5: warning: singleton variables [Head]

for list_odd_len/1

D:/TP Prolog/Sample_Codes/list_misc.pl compiled, 8 lines read - 1432 bytes

written, 8 ms

yes

| ?- list_divide([a,1,b,2,c,3,d,5,e],L1,L2).

L1 = [a,b,c,d,e]

L2 = [1,2,3,5] ?

yes

| ?- list_divide([a,b,c,d],L1,L2).

L1 = [a,c]

L2 = [b,d]

yes

| ?-

 Prolog

 68

Max Item Operation

This operation is used to find the maximum element from a list. We will define a predicate,

list_max_elem(List, Max), then this will find Max element from the list and return.

 If there is only one element, then it will be the max element.

 Divide the list as [X,Y|Tail]. Now recursively find max of [Y|Tail] and store it into

MaxRest, and store maximum of X and MaxRest, then store it to Max.

Program

max_of_two(X,Y,X) :- X >= Y.

max_of_two(X,Y,Y) :- X < Y.

list_max_elem([X],X).

list_max_elem([X,Y|Rest],Max) :-

 list_max_elem([Y|Rest],MaxRest),

 max_of_two(X,MaxRest,Max).

Output

| ?- [list_misc].

compiling D:/TP Prolog/Sample_Codes/list_misc.pl for byte code...

D:/TP Prolog/Sample_Codes/list_misc.pl:2: warning: singleton variables [Head]

for list_even_len/1

D:/TP Prolog/Sample_Codes/list_misc.pl:5: warning: singleton variables [Head]

for list_odd_len/1

D:/TP Prolog/Sample_Codes/list_misc.pl compiled, 16 lines read - 2385 bytes

written, 16 ms

yes

| ?- list_max_elem([8,5,3,4,7,9,6,1],Max).

Max = 9 ?

yes

| ?- list_max_elem([5,12,69,112,48,4],Max).

Max = 112 ?

yes

| ?-

 Prolog

 69

List Sum Operation

In this example, we will define a clause, list_sum(List, Sum), this will return the sum of

the elements of the list.

 If the list is empty, then sum will be 0.

 Represent list as [Head|Tail], find sum of tail recursively and store them into

SumTemp, then set Sum = Head + SumTemp.

Program

list_sum([],0).

list_sum([Head|Tail], Sum) :-

 list_sum(Tail,SumTemp),

 Sum is Head + SumTemp.

Output

yes

| ?- [list_misc].

compiling D:/TP Prolog/Sample_Codes/list_misc.pl for byte code...

D:/TP Prolog/Sample_Codes/list_misc.pl:2: warning: singleton variables [Head]

for list_even_len/1

D:/TP Prolog/Sample_Codes/list_misc.pl:5: warning: singleton variables [Head]

for list_odd_len/1

D:/TP Prolog/Sample_Codes/list_misc.pl compiled, 21 lines read - 2897 bytes

written, 21 ms

(32 ms) yes

| ?- list_sum([5,12,69,112,48,4],Sum).

Sum = 250

yes

| ?- list_sum([8,5,3,4,7,9,6,1],Sum).

Sum = 43

yes

| ?-

 Prolog

 70

Merge Sort on a List

If the list is [4,5,3,7,8,1,2], then the result will be [1,2,3,4,5,7,8]. The steps of performing

merge sort are shown below:

 Take the list and split them into two sub-lists. This split will be performed

recursively.

 Merge each split in sorted order.

 Thus the entire list will be sorted.

We will define a predicate called mergesort(L, SL), it will take L and return result into SL.

Program

mergesort([],[]). /* covers special case */

mergesort([A],[A]).

mergesort([A,B|R],S) :-

 split([A,B|R],L1,L2),

 mergesort(L1,S1),

 mergesort(L2,S2),

 merge(S1,S2,S).

split([],[],[]).

split([A],[A],[]).

split([A,B|R],[A|Ra],[B|Rb]) :-

 split(R,Ra,Rb).

merge(A,[],A).

merge([],B,B).

merge([A|Ra],[B|Rb],[A|M]) :-

 A =< B, merge(Ra,[B|Rb],M).

merge([A|Ra],[B|Rb],[B|M]) :-

 A > B, merge([A|Ra],Rb,M).

Output

| ?- [merge_sort].

compiling D:/TP Prolog/Sample_Codes/merge_sort.pl for byte code...

D:/TP Prolog/Sample_Codes/merge_sort.pl compiled, 17 lines read - 3048 bytes

written, 19 ms

yes

 Prolog

 71

| ?- mergesort([4,5,3,7,8,1,2],L).

L = [1,2,3,4,5,7,8] ?

yes

| ?- mergesort([8,5,3,4,7,9,6,1],L).

L = [1,3,4,5,6,7,8,9] ?

yes

| ?-

 Prolog

 72

This chapter covers recursion and structures.

Recursion

Recursion is a technique in which one predicate uses itself (may be with some other

predicates) to find the truth value.

Let us understand this definition with the help of an example:

 is_digesting(X,Y) :- just_ate(X,Y).

 is_digesting(X,Y) :-just_ate(X,Z),is_digesting(Z,Y).

So this predicate is recursive in nature. Suppose we say that just_ate(deer, grass), it

means is_digesting(deer, grass) is true. Now if we say is_digesting(tiger, grass), this will

be true if is_digesting(tiger, grass) :- just_ate(tiger, deer), is_digesting(deer, grass), then

the statement is_digesting(tiger, grass) is also true.

There may be some other examples also, so let us see one family example. So if we want

to express the predecessor logic, that can be expressed using the following diagram:

11. Prolog — Recursion and Structures

 Prolog

 73

So we can understand the predecessor relationship is recursive. We can express this

relationship using the following syntax:

 predecessor(X, Z) :- parent(X, Z).

 predecessor(X, Z) :- parent(X, Y),predecessor(Y, Z).

Structures

Structures are Data Objects that contain multiple components.

For example, the date can be viewed as a structure with three components — day, month

and year. Then the date 9th April, 2020 can be written as: date(9, apr, 2020).

Note: Structure can in turn have another structure as a component in it.

So we can see views as tree structure and Prolog Functors.

Now let us see one example of structures in Prolog. We will define a structure of points,

Segments and Triangle as structures.

To represent a point, a line segment and a triangle using structure in Prolog, we can

consider following statements:

 p1 : point(1, 1)

 p2: point(2,3)

 Prolog

 74

 S : seg(Pl, P2): seg(point(1,1), point(2,3))

 T : triangle(point(4,Z), point(6,4), point(7,1))

Note: Structures can be naturally pictured as trees. Prolog can be viewed as a language

for processing trees.

Matching in Prolog

Matching is used to check whether two given terms are same (identical) or the variables

in both terms can have the same objects after being instantiated. Let us see one example.

Suppose date structure is defined as date(D,M,2020) = date(D1,apr, Y1), this indicates

that D = D1, M = feb and Y1 = 2020.

Following rules are to be used to check whether two terms S and T match:

 If S and T are constants, S=T if both are same objects.

 If S is a variable and T is anything, T=S.

 If T is variable and S is anything, S=T.

 If S and T are structures, S=T if:

o S and T have same functor.

o All their corresponding arguments components have to match.

Binary Trees

Following is the structure of binary tree using recursive structures:

The definition of the structure is as follows:

node(2, node(1,nil,nil), node(6, node(4,node(3,nil,nil), node(5,nil,nil)),

node(7,nil,nil))

 Prolog

 75

Each node has three fields, data and two nodes. One node with no child (leaf node)

structure is written as node(value, nil, nil), node with only one left child is written as

node(value, left_node, nil), node with only one right child is written as node(value,

nil; right_node), and node with both child has node(value, left_node, right_node).

 Prolog

 76

In this chapter, we will discuss the backtracking in Prolog. Backtracking is a procedure, in

which prolog searches the truth value of different predicates by checking whether they are

correct or not. The backtracking term is quite common in algorithm designing, and in

different programming environments. In Prolog, until it reaches proper destination, it tries

to backtrack. When the destination is found, it stops.

Let us see how backtracking takes place using one tree like structure:

Suppose A to G are some rules and facts. We start from A and want to reach G. The proper

path will be A-C-G, but at first, it will go from A to B, then B to D. When it finds that D is

not the destination, it backtracks to B, then go to E, and backtracks again to B, as there

is no other child of B, then it backtracks to A, thus it searches for G, and finally found G

in the path A-C-G. (Dashed lines are indicating the backtracking.) So when it finds G, it

stops.

How Backtracking works?

Now we know, what is the backtracking in Prolog. Let us see one example,

Note: While we are running some prolog code, during backtracking there may be multiple

answers, we can press semicolon (;) to get next answers one by one, that helps to

backtrack. Otherwise when we get one result, it will stop.

Now, consider a situation, where two people X and Y can pay each other, but the condition

is that a boy can pay to a girl, so X will be a boy, and Y will be a girl. So for these we have

defined some facts and rules:

Knowledge Base

boy(tom).

boy(bob).

12. Prolog — Backtracking

 Prolog

 77

girl(alice).

girl(lili).

pay(X,Y) :- boy(X), girl(Y).

Following is the illustration of the above scenario:

As X will be a boy, so there are two choices, and for each boy there are two choices alice

and lili. Now let us see the output, how backtracking is working.

Output

| ?- [backtrack].

compiling D:/TP Prolog/Sample_Codes/backtrack.pl for byte code...

D:/TP Prolog/Sample_Codes/backtrack.pl compiled, 5 lines read - 703 bytes

written, 22 ms

yes

| ?- pay(X,Y).

X = tom

Y = alice ?

(15 ms) yes

| ?- pay(X,Y).

X = tom

 Prolog

 78

Y = alice ? ;

X = tom

Y = lili ? ;

X = bob

Y = alice ? ;

X = bob

Y = lili

yes

| ?- trace.

The debugger will first creep -- showing everything (trace)

(16 ms) yes

{trace}

| ?- pay(X,Y).

 1 1 Call: pay(_23,_24) ?

 2 2 Call: boy(_23) ?

 2 2 Exit: boy(tom) ?

 3 2 Call: girl(_24) ?

 3 2 Exit: girl(alice) ?

 1 1 Exit: pay(tom,alice) ?

X = tom

Y = alice ? ;

 1 1 Redo: pay(tom,alice) ?

 3 2 Redo: girl(alice) ?

 3 2 Exit: girl(lili) ?

 1 1 Exit: pay(tom,lili) ?

X = tom

Y = lili ? ;

 1 1 Redo: pay(tom,lili) ?

 2 2 Redo: boy(tom) ?

 2 2 Exit: boy(bob) ?

 Prolog

 79

 3 2 Call: girl(_24) ?

 3 2 Exit: girl(alice) ?

 1 1 Exit: pay(bob,alice) ?

X = bob

Y = alice ? ;

 1 1 Redo: pay(bob,alice) ?

 3 2 Redo: girl(alice) ?

 3 2 Exit: girl(lili) ?

 1 1 Exit: pay(bob,lili) ?

X = bob

Y = lili

yes

{trace}

| ?-

Preventing Backtracking

So far we have seen some concepts of backtracking. Now let us see some drawbacks of

backtracking. Sometimes we write the same predicates more than once when our program

demands, for example to write recursive rules or to make some decision making systems.

In such cases uncontrolled backtracking may cause inefficiency in a program. To resolve

this, we will use the Cut in Prolog.

Suppose we have some rules as follows:

Double step function

 Rule 1: if X < 3 then Y = 0

 Rule 2: if 3 <= X and X < 6 then Y = 2

 Rule 3: if 6 <= X then Y = 4

In Prolog syntax we can write,

 f(X,0) :- X < 3. % Rule 1

 f(X,2) :- 3 =< X, X < 6. % Rule 2

 f(X,4) :- 6 =< X. % Rule 3

Now if we ask for a question as f (1,Y), 2 < Y.

The first goal f(1,Y) instantiated Y to 0. The second goal becomes 2 < 0 which fails. Prolog

tries through backtracking two unfruitful alternatives (Rule 2 and Rule 3). If we see closer,

we can observe that:

 Prolog

 80

 The three rules are mutually exclusive and one of them at most will succeed.

 As soon as one of them succeeds there is no point in trying to use the others as

they are bound to fail.

So we can use cut to resolve this. The cut can be expressed using Exclamation symbol.

The prolog syntax is as follows:

 f (X,0) :- X < 3, !. % Rule 1

 f (X,2) :- 3 =< X, X < 6, !. % Rule 2

 f (X,4) :- 6 =< X. % Rule 3

Now if we use the same question, ?- f (1,Y), 2 < Y. Prolog choose rule 1 since 1 < 3 and

fails the goal 2 < Y fails. Prolog will try to backtrack, but not beyond the point marked !

In the program, rule 2 and rule 3 will not be generated.

Let us see this in below execution:

Program

f(X,0) :- X < 3. % Rule 1

f(X,2) :- 3 =< X, X < 6. % Rule 2

f(X,4) :- 6 =< X. % Rule 3

Output

| ?- [backtrack].

compiling D:/TP Prolog/Sample_Codes/backtrack.pl for byte code...

D:/TP Prolog/Sample_Codes/backtrack.pl compiled, 10 lines read - 1224 bytes

written, 17 ms

yes

| ?- f(1,Y), 2<Y.

no

| ?- trace

.

The debugger will first creep -- showing everything (trace)

yes

{trace}

| ?- f(1,Y), 2<Y.

 1 1 Call: f(1,_23) ?

 2 2 Call: 1<3 ?

 2 2 Exit: 1<3 ?

 Prolog

 81

 1 1 Exit: f(1,0) ?

 3 1 Call: 2<0 ?

 3 1 Fail: 2<0 ?

 1 1 Redo: f(1,0) ?

 2 2 Call: 3=<1 ?

 2 2 Fail: 3=<1 ?

 2 2 Call: 6=<1 ?

 2 2 Fail: 6=<1 ?

 1 1 Fail: f(1,_23) ?

(46 ms) no

{trace}

| ?-

Let us see the same using cut.

Program

f(X,0) :- X < 3,!. % Rule 1

f(X,2) :- 3 =< X, X < 6,!. % Rule 2

f(X,4) :- 6 =< X. % Rule 3

Output

| ?- [backtrack].

 1 1 Call: [backtrack] ?

compiling D:/TP Prolog/Sample_Codes/backtrack.pl for byte code...

D:/TP Prolog/Sample_Codes/backtrack.pl compiled, 10 lines read - 1373 bytes

written, 15 ms

 1 1 Exit: [backtrack] ?

(16 ms) yes

{trace}

| ?- f(1,Y), 2<Y.

 1 1 Call: f(1,_23) ?

 2 2 Call: 1<3 ?

 2 2 Exit: 1<3 ?

 1 1 Exit: f(1,0) ?

 3 1 Call: 2<0 ?

 3 1 Fail: 2<0 ?

 Prolog

 82

no

{trace}

| ?-

Negation as Failure

Here we will perform failure when condition does not satisfy. Suppose we have a

statement, “Mary likes all animals but snakes”, we will express this in Prolog.

It would be very easy and straight forward, if the statement is “Mary likes all animals”. In

that case we can write “Mary likes X if X is an animal”. And in prolog we can write this

statement as, likes(mary, X) := animal(X).

Our actual statement can be expressed as:

 If X is snake, then “Mary likes X” is not true

 Otherwise if X is an animal, then Mary likes X.

In prolog we can write this as:

 likes(mary,X) :- snake(X), !, fail.

 likes(mary, X) :- animal(X).

The ‘fail’ statement causes the failure. Now let us see how it works in Prolog.

Program

animal(dog).

animal(cat).

animal(elephant).

animal(tiger).

animal(cobra).

animal(python).

snake(cobra).

snake(python).

likes(mary, X) :- snake(X), !, fail.

likes(mary, X) :- animal(X).

Output

| ?- [negate_fail].

compiling D:/TP Prolog/Sample_Codes/negate_fail.pl for byte code...

D:/TP Prolog/Sample_Codes/negate_fail.pl compiled, 11 lines read - 1118 bytes

written, 17 ms

 Prolog

 83

yes

| ?- likes(mary,elephant).

yes

| ?- likes(mary,tiger).

yes

| ?- likes(mary,python).

no

| ?- likes(mary,cobra).

no

| ?- trace

.

The debugger will first creep -- showing everything (trace)

yes

{trace}

| ?- likes(mary,dog).

 1 1 Call: likes(mary,dog) ?

 2 2 Call: snake(dog) ?

 2 2 Fail: snake(dog) ?

 2 2 Call: animal(dog) ?

 2 2 Exit: animal(dog) ?

 1 1 Exit: likes(mary,dog) ?

yes

{trace}

| ?- likes(mary,python).

 1 1 Call: likes(mary,python) ?

 2 2 Call: snake(python) ?

 2 2 Exit: snake(python) ?

 3 2 Call: fail ?

 3 2 Fail: fail ?

 1 1 Fail: likes(mary,python) ?

 Prolog

 84

no

{trace}

| ?-

 Prolog

 85

Here we will define two predicates — different and not. The different predicate will check

whether two given arguments are same or not. If they are same, it will return false,

otherwise it will return true. The not predicate is used to negate some statement, which

means, when a statement is true, then not(statement) will be false, otherwise if the

statement is false, then not(statement) will be true.

So the term ‘different’ can be expressed in three different ways as given below:

 X and Y are not literally the same

 X and Y do not match

 The values of arithmetic expression X and Y are not equal

So in Prolog, we will try to express the statements as follows:

 If X and Y match, then different(X,Y) fails,

 Otherwise different(X,Y) succeeds.

The respective prolog syntax will be as follows:

 different(X, X) :- !, fail.

 different(X, Y).

We can also express it using disjunctive clauses as given below:

 different(X, Y) :- X = Y, !, fail ; true. % true is goal that always succeeds

Program

Following example shows how this can be done in prolog:

different(X, X) :- !, fail.

different(X, Y).

Output

| ?- [diff_rel].

compiling D:/TP Prolog/Sample_Codes/diff_rel.pl for byte code...

D:/TP Prolog/Sample_Codes/diff_rel.pl:2: warning: singleton variables [X,Y] for

different/2

D:/TP Prolog/Sample_Codes/diff_rel.pl compiled, 2 lines read - 327 bytes

written, 11 ms

yes

| ?- different(100,200).

13. Prolog — Different and Not

 Prolog

 86

yes

| ?- different(100,100).

no

| ?- different(abc,def).

yes

| ?- different(abc,abc).

no

| ?-

Let us see a program using the disjunctive clauses:

Program

different(X, Y) :- X = Y, !, fail ; true.

Output

| ?- [diff_rel].

compiling D:/TP Prolog/Sample_Codes/diff_rel.pl for byte code...

D:/TP Prolog/Sample_Codes/diff_rel.pl compiled, 0 lines read - 556 bytes

written, 17 ms

yes

| ?- different(100,200).

yes

| ?- different(100,100).

no

| ?- different(abc,def).

yes

| ?- different(abc,abc).

no

| ?-

 Prolog

 87

Not Relation in Prolog

The not relation is very much useful in different cases. In our traditional programming

languages also, we use the logical not operation to negate some statement. So it means

that when a statement is true, then not(statement) will be false, otherwise if the statement

is false, then not(statement) will be true.

In prolog, we can define this as shown below:

not(P) :- P, !, fail ; true.

So if P is true, then cut and fail, this will return false, otherwise it will be true. Now let us

see one simple code to understand this concept.

Program

not(P) :- P, !, fail ; true.

Output

| ?- [not_rel].

compiling D:/TP Prolog/Sample_Codes/not_rel.pl for byte code...

D:/TP Prolog/Sample_Codes/not_rel.pl compiled, 0 lines read - 630 bytes

written, 17 ms

yes

| ?- not(true).

no

| ?- not(fail).

yes

| ?-

 Prolog

 88

In this chapter, we will see some techniques to handle inputs and outputs through prolog.

We will use some built in predicates to do these tasks, and also see file handling

techniques.

Following topics will be discussed in detail:

 Handling inputs and outputs

 File handling using Prolog

 Using some external file to read lines and terms

 Character manipulation for input and output

 Constructing and decomposing atoms

 Consulting prolog files into other prolog program techniques.

Handling input and output

So far we have seen that we can write a program and the query on the console to execute.

In some cases, we print something on the console, that are written in our prolog code. So

here we will see that writing and reading tasks in more detail using prolog. So this will be

the input and output handling techniques.

The write() Predicate

To write the output we can use the write() predicate. This predicate takes the parameter

as input, and writes the content into the console by default. write() can also write in files.

Let us see some examples of write() function.

Program

| ?- write(56).

56

yes

| ?- write('hello').

hello

yes

| ?- write('hello'),nl,write('world').

hello

world

14. Prolog — Inputs and Outputs

 Prolog

 89

yes

| ?- write("ABCDE")

.

[65,66,67,68,69]

yes

From the above example, we can see that the write() predicate can write the contents into

the console. We can use ’nl’ to create a new line. And from this example, it is clear that,

if we want to print some string on the console, we have to use single quotes (‘string‘). But

if we use double quote (“string”), then it will return a list of ASCII values.

The read() Predicate

The read() predicate is used to read from console. User can write something in the console,

that can be taken as input and process it. The read() is generally used to read from

console, but this can also be used to read from files. Now let us see one example to see

how read() works.

Program

cube :-

 write('Write a number: '),

 read(Number),

 process(Number).

process(stop) :- !.

process(Number) :-

 C is Number * Number * Number,

 write('Cube of '),write(Number),write(': '),write(C),nl,

 cube.

Output

| ?- [read_write].

compiling D:/TP Prolog/Sample_Codes/read_write.pl for byte code...

D:/TP Prolog/Sample_Codes/read_write.pl compiled, 9 lines read - 1226 bytes

written, 12 ms

(15 ms) yes

| ?- cube.

Write a number: 2.

Cube of 2: 8

 Prolog

 90

Write a number: 10.

Cube of 10: 1000

Write a number: 12.

Cube of 12: 1728

Write a number: 8.

Cube of 8: 512

Write a number: stop

.

(31 ms) yes

| ?-

The tab() Predicate

The tab() is one additional predicate that can be used to put some blank-spaces while we

write something. So it takes a number as an argument, and prints those many number of

blank spaces.

Program

| ?- write('hello'),tab(15),write('world').

hello world

yes

| ?- write('We'),tab(5),write('will'),tab(5),write('use'),tab(5),write('tabs').

We will use tabs

yes

| ?-

Reading/Writing Files

In this section, we will see how we can use files to read from, and write into the files.

There are some built-in predicates, that can be used to read from file and write into it.

The tell and told

If we want to write into a file, except the console, we can write the tell() predicate. This

tell() predicate takes filename as argument. If that file is not present, then create a new

file, and write into it. That file will be opened until we write the told command. We can

open more than one file using tell(). When told is called, all files will be closed.

Prolog Commands

 Prolog

 91

| ?- told('myFile.txt').

uncaught exception: error(existence_error(procedure,told/1),top_level/0)

| ?- told("myFile.txt").

uncaught exception: error(existence_error(procedure,told/1),top_level/0)

| ?- tell('myFile.txt').

yes

| ?- tell('myFile.txt').

yes

| ?- write('Hello World').

yes

| ?- write(' Writing into a file'),tab(5),write('myFile.txt'),nl.

yes

| ?- write("Write some ASCII values").

yes

| ?- told.

yes

| ?-

Output (myFile.txt)

Hello World Writing into a file myFile.txt

[87,114,105,116,101,32,115,111,109,101,32,65,83,67,73,73,32,118,97,108,117,101,

115]

Similarly, we can also read from files. Let us see some example of reading from file.

The see and seen

When we want to read from file, not from the keyboard, we have to change current input

stream. So we can use see() predicate. This will take filename as input. When the read

operation is completed, then we will use seen command.

Sample File (sample_predicate.txt)

likes(lili, cat).

likes(jhon,dog).

 Prolog

 92

Output

| ?- see('sample_predicate.txt'),

read(X),

read(Y),

seen,

read(Z).

the_end.

X = end_of_file

Y = end_of_file

Z = the_end

yes

| ?-

So from this example, we can see that using the see() predicate we can read from the file.

Now after using seen command, the control transfers to the console again. So finally it

takes input from console.

Processing files of terms

We have seen how to read specific contents (few lines) of a file. Now if we want to

read/process all the contents of a file, we need to write a clause to process file

(process_file), until we reach the end of the file.

Program

process_file :-

 read(Line),

 Line \== end_of_file, % when Line is not not end of file, call process.

 process(Line).

process_file :- !. % use cut to stop backtracking

process(Line):- %this will print the line into the console

 write(Line),nl,

 process_file.

Sample File (sample_predicate.txt)

likes(lili, cat).

likes(jhon,dog).

 Prolog

 93

domestic(dog).

domestic(cat).

Output

| ?- [process_file].

compiling D:/TP Prolog/Sample_Codes/process_file.pl for byte code...

D:/TP Prolog/Sample_Codes/process_file.pl compiled, 9 lines read - 774 bytes

written, 23 ms

yes

| ?- see('sample_predicate.txt'), process_file, seen.

likes(lili,cat)

likes(jhon,dog)

domestic(dog)

domestic(cat)

true ?

(15 ms) yes

| ?-

Manipulating characters

Using read() and write() we can read or write the value of atoms, predicates, strings, etc.

Now in this section we will see how to write single characters into the current output

stream, or how to read from current input stream. So there are some predefined predicates

to do these tasks.

The put(C) and put_char(C) predicates

We can use put(C) to write one character at a time into the current output stream. The

output stream can be a file or the console. This C can be a character or an ASCII code in

other version of Prolog like SWI prolog, but in GNU prolog, it supports only the ASCII

value. To use the character instead of ASCII, we can use put_char(C).

Program

| ?- put(97),put(98),put(99),put(100),put(101).

abcde

yes

| ?- put(97),put(66),put(99),put(100),put(101).

 Prolog

 94

aBcde

(15 ms) yes

| ?- put(65),put(66),put(99),put(100),put(101).

ABcde

yes

| ?-put_char('h'),put_char('e'),put_char('l'),put_char('l'),put_char('o').

hello

yes

| ?-

The get_char(C) and get_code(C) predicates

To read a single character from the current input stream, we can use the get_char(C)

predicate. This will take the character. if we want the ASCII code, we can use get_code(C).

Program

| ?- get_char(X).

A.

X = 'A'

yes

uncaught exception: error(syntax_error('user_input:6 (char:689) expression

expected'),read_term/3)

| ?- get_code(X).

A.

X = 65

yes

uncaught exception: error(syntax_error('user_input:7 (char:14) expression

expected'),read_term/3)

| ?-

 Prolog

 95

Constructing Atoms

The atom constructing means from a list of characters, we can make one atom, or from a

list of ASCII values also we can make atoms. To do this, we have to use atom_chars() and

atom_codes() predicates. In both cases, the first argument will be one variable, and the

second argument will be a list. So atom_chars() constructs atom from characters, but

atom_codes() construct atoms from ASCII sequence.

Example

| ?- atom_chars(X, ['t','i','g','e','r']).

X = tiger

yes

| ?- atom_chars(A, ['t','o','m']).

A = tom

yes

| ?- atom_codes(X, [97,98,99,100,101]).

X = abcde

yes

| ?- atom_codes(A, [97,98,99]).

A = abc

yes

| ?-

Decomposing Atoms

The atom decomposing means from an atom, we can get a sequence of characters, or a

sequence ASCII codes. To do this, we have to use the same atom_chars() and

atom_codes() predicates. But one difference is that, in both cases, the first argument will

be one atom, and the second argument will be a variable. So atom_chars() decomposes

atom to characters, but atom_codes() decomposes atoms to ASCII sequence.

Example

| ?- atom_chars(tiger,X).

 Prolog

 96

X = [t,i,g,e,r]

yes

| ?- atom_chars(tom,A).

A = [t,o,m]

yes

| ?- atom_codes(tiger,X).

X = [116,105,103,101,114]

yes

| ?- atom_codes(tom,A).

A = [116,111,109]

(16 ms) yes

| ?-

The consult in Prolog

The consulting is a technique, that is used to merge the predicates from different files. We

can use the consult() predicate, and pass the filename to attach the predicates. Let us see

one example program to understand this concept.

Suppose we have two files, namely, prog1.pl and prog2.pl.

Program (prog1.pl)

likes(mary,cat).

likes(joy,rabbit).

likes(tim,duck).

Program (prog2.pl)

likes(suman,mouse).

likes(angshu,deer).

Output

 Prolog

 97

| ?- [prog1].

compiling D:/TP Prolog/Sample_Codes/prog1.pl for byte code...

D:/TP Prolog/Sample_Codes/prog1.pl compiled, 2 lines read - 443 bytes written,

23 ms

yes

| ?- likes(joy,rabbit).

yes

| ?- likes(suman,mouse).

no

| ?- consult('prog2.pl').

compiling D:/TP Prolog/Sample_Codes/prog2.pl for byte code...

D:/TP Prolog/Sample_Codes/prog2.pl compiled, 1 lines read - 366 bytes written,

20 ms

warning: D:/TP Prolog/Sample_Codes/prog2.pl:1: redefining procedure likes/2

 D:/TP Prolog/Sample_Codes/prog1.pl:1: previous definition

yes

| ?- likes(suman,mouse).

yes

| ?- likes(joy,rabbit).

no

| ?-

Now from this output we can understand that this is not as simple as it seems. If two files

have completely different clauses, then it will work fine. But if there are same

predicates, then while we try to consult the file, it will check the predicates from the second

file, when it finds some match, it simply deletes all of the entry of the same predicates

from the local database, then load them again from the second file.

 Prolog

 98

In Prolog, we have seen the user defined predicates in most of the cases, but there are

some built-in-predicates. There are three types of built-in predicates as given below:

 Identifying terms

 Decomposing structures

 Collecting all solutions

So this is the list of some predicates that are falls under the identifying terms group:

Predicate Description

var(X) succeeds if X is currently an un-instantiated variable.

novar(X) succeeds if X is not a variable, or already instantiated

atom(X) is true if X currently stands for an atom

number(X) is true if X currently stands for a number

integer(X) is true if X currently stands for an integer

float(X) is true if X currently stands for a real number.

atomic(X) is true if X currently stands for a number or an atom.

compound(X) is true if X currently stands for a structure.

ground(X) succeeds if X does not contain any un-instantiated variables.

Now, let us see each of them one by one.

The var(X) Predicate

When X is not initialized, then, it will show true, otherwise false. So let us see an example.

Example

| ?- var(X).

yes

| ?- X = 5, var(X).

no

| ?- var([X]).

no

15. Prolog — Built-In Predicates

 Prolog

 99

| ?-

The novar(X) Predicate

When X is not initialized, the, it will show false, otherwise true. So let us see an example.

Example

| ?- nonvar(X).

no

| ?- X = 5,nonvar(X).

X = 5

yes

| ?- nonvar([X]).

yes

| ?-

The atom(X) Predicate

This will return true, when a non-variable term with 0 argument and a not numeric term

is passed as X, otherwise false.

Example

| ?- atom(paul).

yes

| ?- X = paul,atom(X).

X = paul

yes

| ?- atom([]).

yes

| ?- atom([a,b]).

 Prolog

 100

no

| ?-

The number(X) Predicate

This will return true, X stands for any number, otherwise false.

Example

| ?- number(X).

no

| ?- X=5,number(X).

X = 5

yes

| ?- number(5.46).

yes

| ?-

The integer(X) Predicate

This will return true, when X is a positive or negative integer value, otherwise false.

Example

| ?- integer(5).

yes

| ?- integer(5.46).

no

| ?-

The float(X) Predicate

This will return true, X is a floating point number, otherwise false.

Example

| ?- float(5).

 Prolog

 101

no

| ?- float(5.46).

yes

| ?-

The atomic(X) Predicate

We have atom(X), that is too specific, it returns false for numeric data, the atomic(X) is

like atom(X) but it accepts number.

Example

| ?- atom(5).

no

| ?- atomic(5).

yes

| ?-

The compound(X) Predicate

If atomic(X) fails, then the terms are either one non-instantiated variable (that can be

tested with var(X)) or a compound term. Compound will be true when we pass some

compound structure.

Example

| ?- compound([]).

no

| ?- compound([a]).

yes

| ?- compound(b(a)).

yes

| ?-

 Prolog

 102

The ground(X) Predicate

This will return true, if X does not contain any un-instantiated variables. This also checks

inside the compound terms, otherwise returns false.

Example

| ?- ground(X).

no

| ?- ground(a(b,X)).

no

| ?- ground(a).

yes

| ?- ground([a,b,c]).

yes

| ?-

Decomposing Structures

Now we will see, another group of built-in predicates, that is Decomposing structures. We

have seen the identifying terms before. So when we are using compound structures we

cannot use a variable to check or make a functor. It will return error. So functor name

cannot be represented by a variable.

Error

X = tree, Y = X(maple).

Syntax error Y=X<<here>>(maple)

Now, let us see some inbuilt predicates that falls under the Decomposing structures group.

The functor(T,F,N) Predicate

This returns true if F is the principal functor of T, and N is the arity of F.

Note: Arity means the number of attributes.

Example

| ?- functor(t(f(X),a,T),Func,N).

Func = t

 Prolog

 103

N = 3

(15 ms) yes

| ?-

The arg(N,Term,A) Predicate

This returns true if A is the Nth argument in Term. Otherwise returns false.

Example

| ?- arg(1,t(t(X),[]),A).

A = t(X)

yes

| ?- arg(2,t(t(X),[]),A).

A = []

yes

| ?-

Now, let us see another example. In this example, we are checking that the first argument

of D will be 12, the second argument will be apr and the third argument will be 2020.

Example

| ?- functor(D,date,3), arg(1,D,12), arg(2,D,apr), arg(3,D,2020).

D = date(12,apr,2020)

yes

| ?-

The ../2 Predicate

This is another predicate represented as double dot (..). This takes 2 arguments, so ‘/2’ is

written. So Term = .. L, this is true if L is a list that contains the functor of Term, followed

by its arguments.

Example

| ?- f(a,b) =.. L.

 Prolog

 104

L = [f,a,b]

yes

| ?- T =.. [is_blue,sam,today].

T = is_blue(sam,today)

yes

| ?-

By representing the component of a structure as a list, they can be recursively processed

without knowing the functor name. Let us see another example:

Example

| ?- f(2,3)=..[F,N|Y], N1 is N*3, L=..[F,N1|Y].

F = f

L = f(6,3)

N = 2

N1 = 6

Y = [3]

yes

| ?-

Collecting All Solutions

Now let us see the third category called the collecting all solutions, that falls under built-

in predicates in Prolog.

We have seen that to generate all of the given solutions of a given goal using the semicolon

in the prompt. So here is an example of it.

Example

| ?- member(X, [1,2,3,4]).

X = 1 ? ;

X = 2 ? ;

 Prolog

 105

X = 3 ? ;

X = 4

yes

Sometimes, we need to generate all of the solutions to some goal within a program in

some AI related applications. So there are three built-in predicates that will help us to get

the results. These predicates are as follows:

 findall/3

 setoff/3

 bagof/3

These three predicates take three arguments, so we have written ‘/3’ after the name of

the predicates.

These are also known as meta-predicates. These are used to manipulate Prolog’s Proof

strategy.

Syntax

findall(X,P,L).

setof(X,P,L)

bagof(X,P,L)

These three predicates a list of all objects X, such that the goal P is satisfied (example:

age(X,Age)). They all repeatedly call the goal P, by instantiating variable X within P and

adding it to the list L. This stops when there is no more solution.

Findall/3, Setof/3 and Bagof/3

Here we will see the three different built-in predicates findall/3, setof/3 and the bagof/3,

that fall into the category, collecting all solutions.

The findall/3 Predicate

This predicate is used to make a list of all solutions X, from the predicate P. The returned

list will be L. So we will read this as “find all of the Xs, such that X is a solution of predicate

P and put the list of results in L”. Here this predicate stores the results in the same order,

in which Prolog finds them. And if there are duplicate solutions, then all will come into the

resultant list, and if there is infinite solution, then the process will never terminate.

Now we can also do some advancement on them. The second argument, which is the goal,

that might be a compound goal. Then the syntax will be as findall(X, (Predicate on X,

other goal), L)

And also the first argument can be a term of any complexity. So let us see the examples

of these few rules, and check the output.

 Prolog

 106

Example

| ?- findall(X, member(X, [1,2,3,4]), Results).

Results = [1,2,3,4]

yes

| ?- findall(X, (member(X, [1,2,3,4]), X > 2), Results).

Results = [3,4]

yes

| ?- findall(X/Y, (member(X,[1,2,3,4]), Y is X * X), Results).

Results = [1/1,2/4,3/9,4/16]

yes

| ?-

The setof/3 Predicate

The setof/3 is also like findall/3, but here it removes all of the duplicate outputs, and the

answers will be sorted.

If any variable is used in the goal, then that will not appear in the first argument, setof/3

will return a separate result for each possible instantiation of that variable.

Let us see one example to understand this setof/3. Suppose we have a knowledge base

as shown below:

age(peter, 7).

age(ann, 5).

age(pat, 8).

age(tom, 5).

age(ann, 5).

Here we can see that age(ann, 5) has two entries in the knowledge base. And the ages

are not sorted, and names are not sorted lexicographically in this case. Now let us see one

example of setof/3 usage.

Example 1

| ?- setof(Child, age(Child,Age),Results).

 Prolog

 107

Age = 5

Results = [ann,tom] ? ;

Age = 7

Results = [peter] ? ;

Age = 8

Results = [pat]

(16 ms) yes

| ?-

Here we can see the ages and the names both are coming sorted. For age 5, there is two

entries, so the predicate has created one list corresponding to the age value, with two

elements. And the duplicate entry is present only once.

We can use the nested call of setof/3, to collect together the individual results. We will see

another example, where the first argument will be Age/Children. As the second argument,

it will take another setof like before. So this will return a list of (age/Children) pair. Let us

see this in the prolog execution:

Example 2

| ?- setof(Age/Children, setof(Child,age(Child,Age), Children), AllResults).

AllResults = [5/[ann,tom],7/[peter],8/[pat]]

yes

| ?-

Now if we do not care about a variable that does not appear in the first argument, then

we can use the following example:

Example 3

| ?- setof(Child, Age^age(Child,Age), Results).

Results = [ann,pat,peter,tom]

yes

| ?-

Here we are using the upper caret symbol (^), this indicates that the Age is not in the first

argument. So we will read this as, “Find the set of all children, such that the child has an

Age (whatever it may be), and put the result in Results”.

 Prolog

 108

The bagof/3 Predicate

The bagof/3 is like setof/3, but here it does not remove the duplicate outputs, and the

answers may not be sorted.

Let us see one example to understand this bagof/3. Suppose we have a knowledge base

as follows:

Knowledge base

age(peter, 7).

age(ann, 5).

age(pat, 8).

age(tom, 5).

age(ann, 5).

Example

| ?- bagof(Child, age(Child,Age),Results).

Age = 5

Results = [ann,tom,ann] ? ;

Age = 7

Results = [peter] ? ;

Age = 8

Results = [pat]

(15 ms) yes

| ?-

Here for the Age value 5, the results are [ann, tom, ann]. So the answers are not sorted,

and duplicate entries are not removed, so we have got two ‘ann’ values.

The bagof/3 is different from findall/3, as this generates separate results for all the

variables in the goal that do not appear in the first argument. We will see this using an

example below:

Example

| ?- findall(Child, age(Child,Age),Results).

Results = [peter,ann,pat,tom,ann]

 Prolog

 109

yes

| ?-

Mathematical Predicates

Following are the mathematical predicates:

Predicates Description

random(L,H,X). Get random value between L and H

between(L,H,X). Get all values between L and H

succ(X,Y). Add 1 and assign it to X

abs(X). Get absolute value of X

max(X,Y). Get largest value between X and Y

min(X,Y). Get smallest value between X and Y

round(X). Round a value near to X

truncate(X). Convert float to integer, delete the fractional part

floor(X). Round down

ceiling(X). Round up

sqrt(X). Square root

Besides these, there are some other predicates such as sin, cos, tan, asin, acos, atan,

atan2, sinh, cosh, tanh, asinh, acosh, atanh, log, log10, exp, pi, etc.

Now let us see these functions in action using a Prolog program.

Example

| ?- random(0,10,X).

X = 0

yes

| ?- random(0,10,X).

X = 5

yes

| ?- random(0,10,X).

X = 1

 Prolog

 110

yes

| ?- between(0,10,X).

X = 0 ? a

X = 1

X = 2

X = 3

X = 4

X = 5

X = 6

X = 7

X = 8

X = 9

X = 10

(31 ms) yes

| ?- succ(2,X).

X = 3

yes

| ?- X is abs(-8).

X = 8

yes

 Prolog

 111

| ?- X is max(10,5).

X = 10

yes

| ?- X is min(10,5).

X = 5

yes

| ?- X is round(10.56).

X = 11

yes

| ?- X is truncate(10.56).

X = 10

yes

| ?- X is floor(10.56).

X = 10

yes

| ?- X is ceiling(10.56).

X = 11

yes

| ?- X is sqrt(144).

X = 12.0

yes

| ?-

 Prolog

 112

So far we have seen different concepts of logic programming in Prolog. Now we will see

one case study on Prolog. We will see how to implement a tree data structure using Prolog,

and we will create our own operators. So let us start the planning.

Suppose we have a tree as shown below:

We have to implement this tree using prolog. We have some operations as follows:

 op(500, xfx, ‘is_parent’).

 op(500, xfx, ‘is_sibling_of’).

 op(500, xfx, ‘is_at_same_level’).

 And another predicate namely leaf_node(Node)

In these operators, you have seen some parameters as (500, xfx, <operator_name>).

The first argument (here 500) is the priority of that operator. The ‘xfx’ indicates that this

is a binary operator and the <operator_name> is the name of the operator.

These operators can be used to define the tree database. We can use these operators as

follows:

 a is_parent b, or is_parent(a, b). So this indicates that node a is the parent of

node b.

16. Prolog — Tree Data Structure (Case Study)

 Prolog

 113

 X is_sibling_of Y or is_sibling_of(X,Y). This indicates that X is the sibling of

node Y. So the rule is, if another node Z is parent of X and Z is also the parent of

Y and X and Y are different, then X and Y are siblings.

 leaf_node(Node). A node (Node) is said to be a leaf node when a node has no

children.

 X is_at_same_level Y, or is_at_same_level(X,Y). This will check whether X

and Y are at the same level or not. So the condition is when X and Y are same,

then it returns true, otherwise W is the parent of X, Z is the parent of Y and W and

Z are at the same level.

As shown above, other rules are defined in the code. So let us see the program to get

better view.

Program

/* The tree database */

:- op(500,xfx,'is_parent').

a is_parent b. c is_parent g. f is_parent l. j is_parent q.

a is_parent c. c is_parent h. f is_parent m. j is_parent r.

a is_parent d. c is_parent i. h is_parent n. j is_parent s.

b is_parent e. d is_parent j. i is_parent o. m is_parent t.

b is_parent f. e is_parent k. i is_parent p. n is_parent u.

 n

is_parent v.

/* X and Y are siblings i.e. child from the same parent */

:- op(500,xfx,'is_sibling_of').

X is_sibling_of Y :- Z is_parent X,

 Z is_parent Y,

 X \== Y.

leaf_node(Node) :- \+ is_parent(Node,Child). % Node grounded

/* X and Y are on the same level in the tree. */

:-op(500,xfx,'is_at_same_level').

 Prolog

 114

X is_at_same_level X .

X is_at_same_level Y :- W is_parent X,

 Z is_parent Y,

 W is_at_same_level Z.

Output

| ?- [case_tree].

compiling D:/TP Prolog/Sample_Codes/case_tree.pl for byte code...

D:/TP Prolog/Sample_Codes/case_tree.pl:20: warning: singleton variables [Child]

for leaf_node/1

D:/TP Prolog/Sample_Codes/case_tree.pl compiled, 28 lines read - 3244 bytes

written, 7 ms

yes

| ?- i is_parent p.

yes

| ?- i is_parent s.

no

| ?- is_parent(i,p).

yes

| ?- e is_sibling_of f.

true ?

yes

| ?- is_sibling_of(e,g).

no

| ?- leaf_node(v).

yes

| ?- leaf_node(a).

no

| ?- is_at_same_level(l,s).

 Prolog

 115

true ?

yes

| ?- l is_at_same_level v.

no

| ?-

More on Tree Data Structure

Here, we will see some more operations that will be performed on the above given tree

data structure.

Let us consider the same tree here:

We will define other operations:

 path(Node)

 locate(Node)

As we have created the last database, we will create a new program that will hold these

operations, then consult the new file to use these operations on our pre-existing program.

So let us see what is the purpose of these operators:

 Prolog

 116

 path(Node): This will display the path from the root node to the given node. To

solve this, suppose X is parent of Node, then find path(X), then write X. When root

node ‘a’ is reached, it will stop.

 locate(Node): This will locate a node (Node) from the root of the tree. In this

case, we will call the path(Node) and write the Node.

Program

Let us see the program in execution:

path(a). /* Can start at a. */

path(Node) :- Mother is_parent Node, /* Choose parent, */

 path(Mother), /* find path and then */

 write(Mother),

 write(' --> ').

/* Locate node by finding a path from root down to the node */

locate(Node) :- path(Node),

 write(Node),

 nl.

Output

| ?- consult('case_tree_more.pl').

compiling D:/TP Prolog/Sample_Codes/case_tree_more.pl for byte code...

D:/TP Prolog/Sample_Codes/case_tree_more.pl compiled, 9 lines read - 866 bytes

written, 6 ms

yes

| ?- path(n).

a --> c --> h -->

true ?

yes

| ?- path(s).

a --> d --> j -->

true ?

yes

 Prolog

 117

| ?- path(w).

no

| ?- locate(n).

a --> c --> h --> n

true ?

yes

| ?- locate(s).

a --> d --> j --> s

true ?

yes

| ?- locate(w).

no

| ?-

Advances in Tree Data Structures

Now let us define some advanced operations on the same tree data structure.

 Prolog

 118

Here we will see how to find the height of a node, that is, the length of the longest path

from that node, using the Prolog built-in predicate setof/3. This predicate takes (Template,

Goal, Set). This binds Set to the list of all instances of Template satisfying the goal Goal.

We have already defined the tree before, so we will consult the current code to execute

these set of operations without redefining the tree database again.

We will create some predicates as follows:

ht(Node,H). This finds the height. It also checks whether a node is leaf or not, if so, then

sets height H as 0, otherwise recursively finds the height of children of Node, and add 1

to them.

max([X|R], M,A). This calculates the max element from the list, and a value M. So if M

is maximum, then it returns M, otherwise, it returns the maximum element of list that is

greater than M. To solve this, if given list is empty, return M as max element, otherwise

check whether Head is greater than M or not, if so, then call max() using the tail part and

the value X, otherwise call max() using tail and the value M.

height(N,H). This uses the setof/3 predicate. This will find the set of results using the

goal ht(N,Z) for the template Z and stores into the list type variable called Set. Now find

the max of Set, and value 0, store the result into H.

Now let us see the program in execution:

Program

height(N,H) :- setof(Z,ht(N,Z),Set),

 max(Set,0,H).

ht(Node,0) :- leaf_node(Node),!.

 Prolog

 119

ht(Node,H) :- Node is_parent Child,

 ht(Child,H1),

 H is H1 + 1.

max([],M,M).

max([X|R],M,A) :- (X > M -> max(R,X,A) ; max(R,M,A)).

Output

| ?- consult('case_tree_adv.pl').

compiling D:/TP Prolog/Sample_Codes/case_tree_adv.pl for byte code...

D:/TP Prolog/Sample_Codes/case_tree_adv.pl compiled, 9 lines read - 2060 bytes

written, 9 ms

yes

| ?- ht(c,H).

H = 1 ? a

H = 3

H = 3

H = 2

H = 2

yes

| ?- max([1,5,3,4,2],10,Max).

Max = 10

yes

| ?- max([1,5,3,40,2],10,Max).

Max = 40

yes

 Prolog

 120

| ?- setof(H, ht(c,H),Set).

Set = [1,2,3]

yes

| ?- max([1,2,3],0,H).

H = 3

yes

| ?- height(c,H).

H = 3

yes

| ?- height(a,H).

H = 4

yes

| ?-

 Prolog

 121

Prolog — Examples

 Prolog

 122

In the following chapter, we are going to discuss basic prolog examples to:

 Find minimum maximum of two numbers

 Find the equivalent resistance of a resistive circuit

 Verify whether a line segment is horizontal, vertical or oblique

Max and Min of two numbers

Here we will see one Prolog program, that can find the minimum of two numbers and the

maximum of two numbers. First, we will create two predicates, find_max(X,Y,Max). This

takes X and Y values, and stores the maximum value into the Max. Similarly

find_min(X,Y,Min) takes X and Y values, and store the minimum value into the Min

variable.

Program

find_max(X, Y, X) :- X >= Y, !.

find_max(X, Y, Y) :- X < Y.

find_min(X, Y, X) :- X =< Y, !.

find_min(X, Y, Y) :- X > Y.

Output

| ?- find_max(100,200,Max).

Max = 200

yes

| ?- find_max(40,10,Max).

Max = 40

yes

| ?- find_min(40,10,Min).

Min = 10

17. Prolog ― Basic Programs

 Prolog

 123

yes

| ?- find_min(100,200,Min).

Min = 100

yes

| ?-

Resistance and Resistive Circuits

In this section, we will see how to write a prolog program that will help us find the

equivalent resistance of a resistive circuit.

Let us consider the following circuit to understand this concept:

We have to find the equivalent resistance of this network. At first, we will try to get the

result by hand, then try to see whether the result is matching with the prolog output or

not.

We know that there are two rules:

 If R1 and R2 are in Series, then equivalent resistor Re = R1 + R2.

 If R1 and R2 are in Parallel, then equivalent resistor Re = (R1 * R2)/(R1 + R2).

Here 10 Ohm and 40 Ohm resistors are in parallel, then that is in series with 12 Ohm, and

the equivalent resistor of the lower half is parallel with 30 Ohm. So let’s try to calculate

the equivalent resistance.

 R3 = (10 * 40)/(10 + 40) = 400/50 = 8 Ohm

 Prolog

 124

 R4 = R3 + 12 = 8 + 12 = 20 Ohm

 R5 = (20 * 30)/(20 + 30) = 12 Ohm

Program

series(R1,R2,Re) :- Re is R1 + R2.

parallel(R1,R2,Re) :- Re is ((R1 * R2) / (R1 + R2)).

Output

| ?- [resistance].

compiling D:/TP Prolog/Sample_Codes/resistance.pl for byte code...

D:/TP Prolog/Sample_Codes/resistance.pl compiled, 1 lines read - 804 bytes

written, 14 ms

yes

| ?- parallel(10,40,R3).

R3 = 8.0

yes

| ?- series(8,12,R4).

R4 = 20

yes

| ?- parallel(20,30,R5).

R5 = 12.0

yes

| ?- parallel(10,40,R3),series(R3,12,R4),parallel(R4,30,R5).

R3 = 8.0

R4 = 20.0

R5 = 12.0

yes

| ?-

 Prolog

 125

Horizontal and Vertical Line Segments

There are three types of line segments, horizontal, vertical or oblique. This example

verifies whether a line segment is horizontal, vertical or oblique.

From this diagram we can understand that:

 For Horizontal lines, the y coordinate values of two endpoints are same.

 For Vertical lines, the x coordinate values of two endpoints are same.

 For Oblique lines, the (x,y) coordinates of two endpoints are different.

Now let us see how to write a program to check this.

Program

vertical(seg(point(X,_),point(X,_))).

horizontal(seg(point(_,Y),point(_,Y))).

oblique(seg(point(X1,Y1),point(X2,Y2)))

 :-X1 \== X2,

 Y1 \== Y2.

Output

| ?- [line_seg].

 Prolog

 126

compiling D:/TP Prolog/Sample_Codes/line_seg.pl for byte code...

D:/TP Prolog/Sample_Codes/line_seg.pl compiled, 6 lines read - 1276 bytes

written, 26 ms

yes

| ?- vertical(seg(point(10,20), point(10,30))).

yes

| ?- vertical(seg(point(10,20), point(15,30))).

no

| ?- oblique(seg(point(10,20), point(15,30))).

yes

| ?- oblique(seg(point(10,20), point(15,20))).

no

| ?- horizontal(seg(point(10,20), point(15,20))).

yes

| ?-

 Prolog

 127

In this section, we will see some examples of cuts in prolog. Let us consider, we want to

find the maximum of two elements. So we will check these two conditions.

 If X > Y, then Max := X

 if X <= Y, then Max := Y

Now from these two lines, we can understand that these two statements are mutually

exclusive, so when one is true, another one must be false. In such cases we can use the

cut. So let us see the program.

We can also define a predicate where we use the two cases using disjunction (OR logic).

So when first one satisfies, it does not check for the second one, otherwise, it will check

for the second statement.

Program 1

max(X,Y,X) :- X >= Y,!.

max(X,Y,Y) :- X < Y.

max_find(X,Y,Max) :- X >= Y,!, Max = X; Max = Y.

Output

| ?- [cut_example].

 1 1 Call: [cut_example] ?

compiling D:/TP Prolog/Sample_Codes/cut_example.pl for byte code...

D:/TP Prolog/Sample_Codes/cut_example.pl compiled, 3 lines read - 1195 bytes

written, 43 ms

 1 1 Exit: [cut_example] ?

yes

{trace}

| ?- max(10,20,Max).

 1 1 Call: max(10,20,_23) ?

 2 2 Call: 10>=20 ?

 2 2 Fail: 10>=20 ?

 2 2 Call: 10<20 ?

 2 2 Exit: 10<20 ?

 1 1 Exit: max(10,20,20) ?

18. Prolog — Examples of Cuts

 Prolog

 128

Max = 20

yes

{trace}

| ?- max_find(20,10,Max).

 1 1 Call: max_find(20,10,_23) ?

 2 2 Call: 20>=10 ?

 2 2 Exit: 20>=10 ?

 1 1 Exit: max_find(20,10,20) ?

Max = 20

yes

{trace}

| ?-

Program 2

Let us see another example, where we will use list. In this program we will try to insert an

element into a list, if it is not present in the list before. And if the list has the element

before we will simply cut it. For the membership checking also, if the item is at the head

part, we should not check further, so cut it, otherwise check into the tail part.

list_member(X,[X|_]) :- !.

list_member(X,[_|TAIL]) :- list_member(X,TAIL).

list_append(A,T,T) :- list_member(A,T),!.

list_append(A,T,[A|T]).

Output

| ?- [cut_example].

compiling D:/TP Prolog/Sample_Codes/cut_example.pl for byte code...

D:/TP Prolog/Sample_Codes/cut_example.pl compiled, 9 lines read - 1954 bytes

written, 15 ms

yes

| ?- trace.

The debugger will first creep -- showing everything (trace)

yes

 Prolog

 129

{trace}

| ?- list_append(a,[a,b,c,d,e], L).

 1 1 Call: list_append(a,[a,b,c,d,e],_33) ?

 2 2 Call: list_member(a,[a,b,c,d,e]) ?

 2 2 Exit: list_member(a,[a,b,c,d,e]) ?

 1 1 Exit: list_append(a,[a,b,c,d,e],[a,b,c,d,e]) ?

L = [a,b,c,d,e]

yes

{trace}

| ?- list_append(k,[a,b,c,d,e], L).

 1 1 Call: list_append(k,[a,b,c,d,e],_33) ?

 2 2 Call: list_member(k,[a,b,c,d,e]) ?

 3 3 Call: list_member(k,[b,c,d,e]) ?

 4 4 Call: list_member(k,[c,d,e]) ?

 5 5 Call: list_member(k,[d,e]) ?

 6 6 Call: list_member(k,[e]) ?

 7 7 Call: list_member(k,[]) ?

 7 7 Fail: list_member(k,[]) ?

 6 6 Fail: list_member(k,[e]) ?

 5 5 Fail: list_member(k,[d,e]) ?

 4 4 Fail: list_member(k,[c,d,e]) ?

 3 3 Fail: list_member(k,[b,c,d,e]) ?

 2 2 Fail: list_member(k,[a,b,c,d,e]) ?

 1 1 Exit: list_append(k,[a,b,c,d,e],[k,a,b,c,d,e]) ?

L = [k,a,b,c,d,e]

(16 ms) yes

{trace}

| ?-

 Prolog

 130

Towers of Hanoi Problem is a famous puzzle to move N disks from the source peg/tower

to the target peg/tower using the intermediate peg as an auxiliary holding peg. There are

two conditions that are to be followed while solving this problem:

 A larger disk cannot be placed on a smaller disk.

 Only one disk can be moved at a time.

The following diagram depicts the starting setup for N=3 disks.

To solve this, we have to write one procedure move(N, Source, Target, auxiliary). Here N

number of disks will have to be shifted from Source peg to Target peg keeping Auxiliary

peg as intermediate.

For example – move(3, source, target, auxiliary).

 Move top disk from source to target

 Move top disk from source to auxiliary

 Move top disk from target to auxiliary

 Move top disk from source to target

 Move top disk from auxiliary to source

 Move top disk from auxiliary to target

 Move top disk from source to target

Program

move(1,X,Y,_) :-

 write('Move top disk from '), write(X), write(' to '), write(Y), nl.

move(N,X,Y,Z) :-

 N>1,

 M is N-1,

19. Prolog — Towers of Hanoi Problem

 Prolog

 131

 move(M,X,Z,Y),

 move(1,X,Y,_),

 move(M,Z,Y,X).

Output

| ?- [towersofhanoi].

compiling D:/TP Prolog/Sample_Codes/towersofhanoi.pl for byte code...

D:/TP Prolog/Sample_Codes/towersofhanoi.pl compiled, 8 lines read - 1409 bytes

written, 15 ms

yes

| ?- move(4,source,target,auxiliary).

Move top disk from source to auxiliary

Move top disk from source to target

Move top disk from auxiliary to target

Move top disk from source to auxiliary

Move top disk from target to source

Move top disk from target to auxiliary

Move top disk from source to auxiliary

Move top disk from source to target

Move top disk from auxiliary to target

Move top disk from auxiliary to source

Move top disk from target to source

Move top disk from auxiliary to target

Move top disk from source to auxiliary

Move top disk from source to target

Move top disk from auxiliary to target

true ?

(31 ms) yes

 Prolog

 132

Following chapters describe how to generate/create linked lists using recursive structures.

Linked list has two components, the integer part and the link part. The link part will hold

another node. End of list will have nil into the link part.

In prolog, we can express this using node(2, node(5, node(6, nil))).

Note: The smallest possible list is nil, and every other list will contain nil as the "next" of

the end node. In list terminology, the first element is usually called the head of the list,

and the rest of the list is called the tail part. Thus the head of the above list is 2, and its

tail is the list node(5, node(6, nil)).

We can also insert elements into front and back side:

Program

add_front(L,E,NList) :- NList = node(E,L).

add_back(nil, E, NList) :-

 NList = node(E,nil).

add_back(node(Head,Tail), E, NList) :-

 add_back(Tail, E, NewTail),

 NList = node(Head,NewTail).

Output

| ?- [linked_list].

compiling D:/TP Prolog/Sample_Codes/linked_list.pl for byte code...

D:/TP Prolog/Sample_Codes/linked_list.pl compiled, 7 lines read - 966 bytes

written, 14 ms

(15 ms) yes

| ?- add_front(nil, 6, L1), add_front(L1, 5, L2), add_front(L2, 2, L3).

L1 = node(6,nil)

L2 = node(5,node(6,nil))

20. Prolog — Linked Lists

 Prolog

 133

L3 = node(2,node(5,node(6,nil)))

yes

| ?- add_back(nil, 6, L1), add_back(L1, 5, L2), add_back(L2, 2, L3).

L1 = node(6,nil)

L2 = node(6,node(5,nil))

L3 = node(6,node(5,node(2,nil)))

yes

| ?- add_front(nil, 6, L1), add_front(L1, 5, L2), add_back(L2, 2, L3).

L1 = node(6,nil)

L2 = node(5,node(6,nil))

L3 = node(5,node(6,node(2,nil)))

yes

| ?-

 Prolog

 134

In this prolog example, we will see one very interesting and famous problem, The Monkey

and Banana Problem.

Problem Statement

Suppose the problem is as given below:

 A hungry monkey is in a room, and he is near the door.

 The monkey is on the floor.

 Bananas have been hung from the center of the ceiling of the room.

 There is a block (or chair) present in the room near the window.

 The monkey wants the banana, but cannot reach it.

So how can the monkey get the bananas?

So if the monkey is clever enough, he can come to the block, drag the block to the center,

climb on it, and get the banana. Below are few observations in this case:

 Monkey can reach the block, if both of them are at the same level. From the above

image, we can see that both the monkey and the block are on the floor.

 If the block position is not at the center, then monkey can drag it to the center.

21. Prolog — Monkey and Banana Problem

 Prolog

 135

 If monkey and the block both are on the floor, and block is at the center, then the

monkey can climb up on the block. So the vertical position of the monkey will be

changed.

 When the monkey is on the block, and block is at the center, then the monkey can

get the bananas.

Now, let us see how we can solve this using Prolog. We will create some predicates as

follows:

We have some predicates that will move from one state to another state, by performing

action.

 When the block is at the middle, and monkey is on top of the block, and monkey

does not have the banana (i.e. has not state), then using the grasp action, it will

change from has not state to have state.

 From the floor, it can move to the top of the block (i.e. on top state), by performing

the action climb.

 The push or drag operation moves the block from one place to another.

 Monkey can move from one place to another using walk or move clauses.

Another predicate will be canget(). Here we pass a state, so this will perform move

predicate from one state to another using different actions, then perform canget() on state

2. When we have reached to the state ‘has’, this indicates ‘has banana’. We will stop the

execution.

Program

move(state(middle,onbox,middle,hasnot),

 grasp,

 state(middle,onbox,middle,has)).

move(state(P,onfloor,P,H),

 climb,

 state(P,onbox,P,H)).

move(state(P1,onfloor,P1,H),

 drag(P1,P2),

 state(P2,onfloor,P2,H)).

move(state(P1,onfloor,B,H),

 walk(P1,P2),

 state(P2,onfloor,B,H)).

canget(state(_,_,_,has)).

canget(State1) :-

 move(State1,_,State2),

 Prolog

 136

 canget(State2).

Output

| ?- [monkey_banana].

compiling D:/TP Prolog/Sample_Codes/monkey_banana.pl for byte code...

D:/TP Prolog/Sample_Codes/monkey_banana.pl compiled, 17 lines read - 2167 bytes

written, 19 ms

(31 ms) yes

| ?- canget(state(atdoor, onfloor, atwindow, hasnot)).

true ?

yes

| ?- trace

.

The debugger will first creep -- showing everything (trace)

yes

{trace}

| ?- canget(state(atdoor, onfloor, atwindow, hasnot)).

 1 1 Call: canget(state(atdoor,onfloor,atwindow,hasnot)) ?

 2 2 Call: move(state(atdoor,onfloor,atwindow,hasnot),_52,_92) ?

 2 2 Exit:

move(state(atdoor,onfloor,atwindow,hasnot),walk(atdoor,_80),state(_80,onfloor,a

twindow,hasnot)) ?

 3 2 Call: canget(state(_80,onfloor,atwindow,hasnot)) ?

 4 3 Call: move(state(_80,onfloor,atwindow,hasnot),_110,_150) ?

 4 3 Exit:

move(state(atwindow,onfloor,atwindow,hasnot),climb,state(atwindow,onbox,atwindo

w,hasnot)) ?

 5 3 Call: canget(state(atwindow,onbox,atwindow,hasnot)) ?

 6 4 Call: move(state(atwindow,onbox,atwindow,hasnot),_165,_205) ?

 6 4 Fail: move(state(atwindow,onbox,atwindow,hasnot),_165,_193) ?

 5 3 Fail: canget(state(atwindow,onbox,atwindow,hasnot)) ?

 4 3 Redo:

move(state(atwindow,onfloor,atwindow,hasnot),climb,state(atwindow,onbox,atwindo

w,hasnot)) ?

 Prolog

 137

 4 3 Exit:

move(state(atwindow,onfloor,atwindow,hasnot),drag(atwindow,_138),state(_138,onf

loor,_138,hasnot)) ?

 5 3 Call: canget(state(_138,onfloor,_138,hasnot)) ?

 6 4 Call: move(state(_138,onfloor,_138,hasnot),_168,_208) ?

 6 4 Exit:

move(state(_138,onfloor,_138,hasnot),climb,state(_138,onbox,_138,hasnot)) ?

 7 4 Call: canget(state(_138,onbox,_138,hasnot)) ?

 8 5 Call: move(state(_138,onbox,_138,hasnot),_223,_263) ?

 8 5 Exit:

move(state(middle,onbox,middle,hasnot),grasp,state(middle,onbox,middle,has)) ?

 9 5 Call: canget(state(middle,onbox,middle,has)) ?

 9 5 Exit: canget(state(middle,onbox,middle,has)) ?

 7 4 Exit: canget(state(middle,onbox,middle,hasnot)) ?

 5 3 Exit: canget(state(middle,onfloor,middle,hasnot)) ?

 3 2 Exit: canget(state(atwindow,onfloor,atwindow,hasnot)) ?

 1 1 Exit: canget(state(atdoor,onfloor,atwindow,hasnot)) ?

true ?

(78 ms) yes

