Python

Design Patterns

A
tutorialspoint

S I MPLY EASY LEARNINLG

1 B

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

Python Design Patterns

About the Tutorial

This tutorial explains the various types of design patterns and their implementation in
Python scripting language. This tutorial will take you through a roller coaster ride with
different approaches and examples using Python concepts.

Audience

This tutorial is aimed to benefit both basic and intermediate levels of programmers and
developers.

Prerequisites

Before you proceed with this tutorial, it is assumed that the user is already aware about
basic python programming concepts.

Copyright & Disclaimer

© Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

EIMPLYEAGSY LEARMNING

I&JI tutorialspoint

mailto:contact@tutorialspoint.com

Python Design Patterns

Table of Contents

ADOUL the TULOTTAl c..eeiieieeieee ettt sb e bt e et et e b e b e e b e e reeresmnesanes i
YT e 1= o TP PP ST PR PSPPI i

e =T =T o UL =TT PP TP PO PPPPPTRTRN i
(00T 03V T4 o AT D Tl =1 1= USRI i
TaBIE OF CONTENTS ittt e e st e st e st e et e e sab e e e bt e sabeesaneesabeesaneenn i

1. Python Design Patterns — Introductionccccvveeiiiiiiiiiiieneiiiiinieerrn s 1
SEructure of @ deSIZN PATLEIN ..ooceeeeee et e s e e et e e s et e e e e st b e e e esteeesasaeeesnteeeeasseeesnseeas 1

K1Y 1V V24 Vo USSRt 2

2. Python Design Patterns — Gist of PYthoN.........ccceeeeeeeiieiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeseesessseessssssssssssnsssnnnnns 4
FEAtures Of PYENON LANGUAEEccccviiiiiiieecectte ettt e ettt e e ettt e e et e e e s ett e e e e sataeeeeattaeesaaaaesaataeeeessaeesansaaeessseaaans 4
TaaY o] we=] o Lol o] [oL £ TR PO ON 4
How to download python language in YOUTr SYSEEM?cceuiiiiiiiiiieiieeeiee ettt snee s 6

The IMpPortant TOOIS iN PYENONeoiiiiiieee e sttt e s e s sab e sanee s 6
What constitutes a design pattern in PythOn? ... e 7

3. Python Design Patterns — Model View Controller Pattern............cccceeeeeeeeeeeeeeeeennenneneenseessssssssssssssssssssssssssss 8
4. Python Design Patterns — Singleton Pattern........... e eerness s e s s e s e e nnnsssssesanes 12
How to implement @ SINGIELON ClasS? ... ueuiiiiiiee e e e e e e et e e e e e e s e s anbaaneaee s 12

5. Python Design Patterns — Factory Pattern........ccceeeeiiiiiiiieeeeeciicniireeneessscsrresennesssssssssesnnnssssssssssennnnssnsns 15
How to implement @ factory PatterN?........oouiii ittt e et e e e tte e e et e e e e abeeeeeasaeeeesbeeaaas 15

6. Python Design Patterns — Builder Pattern ... eeeeeciiiiiiieeecccininrceneeesscs s eennesssses s s seennnssssssssssennnnssnnes 17
How to implement builder PAtterN?oo oo iii et e e e s e e s ae e e et e e e snnaeeeenreeeeas 17

7. Python Design Patterns — Prototype Pattern.........ccccceeeeeeeeeeeeeneeeeeeeeeeeeeeeessemssns 21
How to implement @ prototype PatterN?eei i e e e e e e s e e s ree e e e s e e e esanneeesnneeeeeas 21

8. Python Design Patterns — Facade Patterncccoccvveririiiniiniinnnsssisssnns 25
How to design @ facade PAtLEINT ... et e e e e e s et e e e e e e s e s asbb e e e e e e eeesansaaneaaans 25

9. Python Design Patterns — Command Patternccoiiiieeeeecciiiiiieeeesccesrreereesseessseeesnsssssssssesesnnnsssssssnees 32
ii

tutorialspoint

EIMPLYEAGSY LEARMNING

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Python Design Patterns

How to implement the command PAtteIrN?cccuiii i e s e s e e e srte e e e eneae e e snaeeeans 32
Python Design Patterns — Adapter Pattern.........cccccceeiricrrirsssnssses 35
How to implement the adapter PAtLEIN? ... e e e e s re e e e sate e e esanaeeesnsaeeeans 35
Python Design Patterns — Decorator Pattern.........cccccvviiiieeeeiiiiiiininneneeiniisseseess s ssssssssee s ssssasssenns 39
How to implement decorator design Pattern ..o 39
Python Design Patterns — Proxy Patterncccccccviiiiiiiiiiinniiisiisissiissses 44
How to implement the ProxXy Pattern?.........co oot s 44
Python Design Patterns — Chain of Responsibility Pattern..........ccccceeviviiiiiiiiiiiiisinnnsncssssssssssssssssssssssssssnnns 46
How to implement the chain of responsibility Pattern?coccei i 46
Python Design Patterns — ObServer Pattern..........cccccecceeereeescsssnnes 49
How to implement the 0bSErVEr PAtterN?cocuiii i e e tre e e s tre e e e tta e e e easaee e saaaeeeeas 49
Python Design Patterns — State Patternccccccceieiiiiircccssnsnnns 52
How to implement the state Pattern? ...t s 52
Python Design Patterns — Strategy Patterncccccceeiiiiiiiisiiiniississs 55
How to implement the strategy Pattern? ... it 55
Python Design Patterns — Template Patterncccccceevviriiiniiiiiiininnniinnsnsnsnsisssnes 57
Python Design Patterns — Flyweight Pattern ... eeeeeiiiiiiiiiieccccirrrcereeesccs s sesneessese s s s eennnssssessssssnnnns 60
How to implement the flyweight Pattern?.........couiii i ettt e et e e aae e e e aaeeeeas 60
Python Design Patterns — Abstract Factory Pattern...........ccovieeeeeciiiiiiiiiieeciccnnreeereeesscsssseeennesssssssesennnnes 62
How to implement the abstract factory Pattern? ..o iiii et ae e e aree e 62
Python Design Patterns — Object Oriented Patterncccoviiieeeeiiiiiiiiiiieciccnrrreereeessce e eeneesssessesennnnes 66
How to implement the object oriented PatternN?........ceviiiiii e e e 66
Python Design Patterns — Object Oriented Concepts Implementationcccceeviiiiiiiiinininnnnnsnsnssssssssnnnns 68
How to implement classes and 0bject Variables?c..evoveiie e 68
Python Design Patterns — [Herator PAtternccccccceiiiiiiiinisiissnes 71
How to implement the iterator PAtLEIN? ... e e e e e e e e e e e s anbaaaeeeaas 71
Python Data Structure — DiCtioNAri@sccceeeeeieiiiiiieieeeiceerrieeeiceeseeeseeeennassssessseeennnsssssssseeennnnssssssssesnnnnns 74
How to implement dictionaries in PYthON?oo it e e s 74

iii

tutorialspoint

EIMPLYEAGSY LEARMNING

24.

25.

26.

27.

28.

29.

30.

Python Design Patterns

Python Design Pattern — The Lists Data StrUCLUreccccceeeiiiiiiiiiiiisinssnnes 76
[Lo X Y o T 0] o] [=T 0 g 1= oYl 11y €3S 76
Python Design Patt@rNs — SEtS......ccccreerrrriririsrsssnnns 78
HOW T IMPIEMENT SEES? ...ttt sttt sttt e st e e bt e e st e e bt e e sabesnbeeesnneenees 78
Python Design Patte@rns — QUEUESccccerriiiiiiss 82
How to implement the FIFO ProCeAUIE?cccuiiiiiiiieeiteeete ettt sttt ettt sme e e b e e saeeenaeas 82
How to implement the LIFO ProCeUIE?oouiiiiieiiieiieesie ettt et st sar e e e sae e 83
WAt iS @ PrIOFItY QUEUE?...ccouiieiieiieeeiee sttt ettt et e et e bt e st e e sbaesba e e sbeesbaeesbaeebeeesbbesabeeenasesbaeenssesnseas 84
Python Design Patterns — Strings and Serializationccccovviiriiiriiiinniinnnsncnssrrssssssss s nees 86
Python Design Patterns — Concurrency in PYthoN ... sssssssssnnes 88
Python Design Patterns — ANti-PatterNsccccceeeerrrrreesssnnns 91
Important features Of ANti-PatLEINScc..ii i e e et e e e e tte e e st e e e e ttaeeeeasaeeessreeeans 91
Python Design Patterns — EXception Handling........ccccevvvrrrrriiiiininnininnnnnnnsnnssnnsses 94
WY USE EXCEPLIONS ...ttt ettt ettt et sttt e ettt s bt e s bt e bt e e b et e bt e e bt e e sbbeebe e e ssbe e bt e esanesabeeenneeeneas 94

iv

EIMPLYEAGSY LEARMNING

w Mtutorialspoint

1. Python Design Patterns — Introduction

Design patterns are used to represent the pattern used by developers to create software
or web application. These patterns are selected based on the requirement analysis. The
patterns describe the solution to the problem, when and where to apply the solution and
the consequences of the implementation.

Structure of a design pattemn

The documentation of design pattern is maintained in a way that focuses more on the
technology that is used and in what ways. The following diagram explains the basic
structure of design pattern documentation.

Pattern Name

Intent /Motive

Applicability

Participants
and Consequences

Pattern Name

It describes the pattern in short and effective manner.

Intent/Motive

It describes what the pattern does.

Applicability

It describes the list of situations where pattern is applicable.

w tutorialspoint

EIMPLYEAGSGYLEARNING

Python Design Patterns

Participants and consequences

Participants include classes and objects that participate in the design pattern with a list of
consequences that exist with the pattern.

Why Python?

Python is an open source scripting language. It has libraries that support a variety of
design patterns. The syntax of python is easy to understand and uses English keywords.

Python provides support for the list of design patterns that are mentioned below. These
design patterns will be used throughout this tutorial:

e Model View Controller Pattern
e Singleton pattern

e Factory pattern

e Builder Pattern

e Prototype Pattern

e Facade Pattern

e Command Pattern

e Adapter Pattern

e Prototype Pattern

o Decorator Pattern

e Proxy Pattern

e Chain of Responsibility Pattern
e Observer Pattern

e State Pattern

e Strategy Pattern

e Template Pattern

e Flyweight Pattern

e Abstract Factory Pattern

e Object Oriented Pattern

Benefits of using design pattern

Following are the different benefits of design pattern:

e Patterns provide developer a selection of tried and tested solutions for the specified
problems.

e All design patterns are language neutral.

w: tutorialspoint

EIMPLYEAGSY LEARMNING

Python Design Patterns

e Patterns help to achieve communication and maintain well documentation.
e Itincludes a record of accomplishment to reduce any technical risk to the project.

e Design patterns are highly flexible to use and easy to understand.

tutorialspoint

EIMPLYEAEGBYLEARNINTIG

2. Python Design Patterns — Gist of Python

Python is an open source scripting language, which is high-level, interpreted, interactive
and object-oriented. It is designed to be highly readable. The syntax of Python language
is easy to understand and uses English keywords frequently.

Features of Python Language

In this section, we will learn about the different features of Python language.

Interpreted

Python is processed at runtime using the interpreter. There is no need to compile program
before execution. It is similar to PERL and PHP.

Object-Oriented

Python follows object-oriented style and design patterns. It includes class definition with
various features like encapsulation, polymorphism and many more.

Portable

Python code written in Windows operating system and can be used in Mac operating
system. The code can be reused and portable as per the requirements.

Easy to code

Python syntax is easy to understand and code. Any developer can understand the syntax
of Python within few hours. Python can be described as “programmer-friendly”

Extensible

If needed, a user can write some of Python code in C language as well. It is also possible
to put python code in source code in different languages like C++. This makes Python an

extensible language.

Important Points

Consider the following important points related to Python programming language:

e It includes functional and structured programming methods as well as object-
oriented programming methods.

e It can be used as scripting language or as a programming language.

e It includes automatic garbage collection.

@ tutorialspoint

EIMPLYEAGSGYLEARNING

Python Design Patterns

e It includes high-level dynamic data types and supports various dynamic type
checking.

e Python includes a feature of integration with C, C++ and languages like Java.

tutorialspoint

EIMPLYEAEGBYLEARNINTIG

Python Design Patterns

How to download python language in your system?

To download Python language in your system, follow this link:

https://www.python.org/downloads/

& python’ o,

About Downloads Documentation Community Success Stories News Events

- 3 \ o
Download the latest version for Windows m \\
' |
'\\I \
\\
between Python 2 and 3. \ /
Looking for Python with a different 0S? Python for Windows, \\ / 2
Linux/UNIX, Mac OS X, Other

Wondering which version to use? Here’s more about the difference

Want to help test development versions of Python? Pre-releases

It includes packages for various operating systems like Windows, MacOS and Linux
distributions.

The Important Tools in Python

In this section, we will learn in brief about a few important tools in Python.

Python Strings

The basic declaration of strings is as follows:

str = "Hello World!'

Python Lists

The lists of python can be declared as compound data types separated by commas and
enclosed within square brackets ([]).

list = ['abcd', 786 , 2.23, 'john', 70.2]
tinylist = [123, "john']

Python Tuples

A tuple is dynamic data type of Python, which consists of humber of values separated by
commas. Tuples are enclosed with parentheses.

tinytuple = (123, 'john'")

@ \tutorialspoint

EIMPLYEAGSY LEARMNING

https://www.python.org/downloads/

Python Design Patterns

Python Dictionary

Python dictionary is a type of hash table. A dictionary key can be almost any data type of
Python. The data types are usually numbers or strings.

tinydict = {'name’': 'omkar','code':6734, 'dept': 'sales'}

What constitutes a design pattern in Python?

Python helps in constituting a design pattern using the following parameters:

e Pattern Name
o Intent

e Aliases

e Motivation

e Problem

e Solution

e Structure

e Participants

e Constraints

e Sample Code

w Mtutorialspoint

EIMPLYEAGSY LEARMNING

3. Python Design Patterns — Model View Controller Pattern

Model View Controller is the most commonly used design pattern. Developers find it easy
to implement this design pattern.

Following is a basic architecture of the Model View Controller:

Updates Manipulates

Sees Uses

User

Let us now see how the structure works.

Model

It consists of pure application logic, which interacts with the database. It includes all the
information to represent data to the end user.

View

' tutorialspoint

EIMPLYEAGSGYLEARNING

Python Design Patterns

View represents the HTML files, which interact with the end user. It represents the model’s
data to user.

Controller

It acts as an intermediary between view and model. It listens to the events triggered by
view and queries model for the same.

Python code

Let us consider a basic object called “Person” and create an MVC design pattern.

Model.py

import json

class Person(object):

def __init__ (self, first_name = None, last_name = None):
self.first_name = first_name
self.last_name = last_name

#returns Person name, ex: John Doe

def name(self):

return ("%s %s" % (self.first_name,self.last _name))

@classmethod
#returns all people inside db.txt as list of Person objects
def getAll(self):
database = open('db.txt"', 'r')
result = []
json_list = json.loads(database.read())
for item in json_list:
item = json.loads(item)
person = Person(item['first_name'], item['last_name'])
result.append(person)

return result

It calls for a method, which fetches all the records of the Person table in database. The
records are presented in JSON format.

EIMPLYEAGSY LEARMNING

w Mtutorialspoint

Python Design Patterns

View

It displays all the records fetched within the model. View never interacts with model;
controller does this work (communicating with model and view).

from model import Person

def showAllView(list):
print 'In our db we have %i users. Here they are:' % len(list)
for item in list:
print item.name()
def startView():
print 'MVC - the simplest example’

print 'Do you want to see everyone in my db?[y/n]’

def endView():

print 'Goodbye!’

Controller

Controller interacts with model through the getAll() method which fetches all the records
displayed to the end user.

from model import Person

import view

def showAll():
#gets list of all Person objects
people_in_db = Person.getAll()
#calls view

return view.showAllView(people _in_db)

def start():
view.startView()
input = raw_input()
if input == 'y':
return showAll()

else:

10

EIMPLYEAGSY LEARMNING

w Mtutorialspoint

Python Design Patterns

return view.endView()

if __name__ == "_main__":
#running controller function

start()

11

tutorialspoint

EIMPLYEAEGBYLEARNINTIG

4. Python Design Patterns — Singleton Pattern

This pattern restricts the instantiation of a class to one object. It is a type of creational
pattern and involves only one class to create methods and specified objects.

It provides a global point of access to the instance created.

~

New Instance 1]

4

T

%

\ Single Instance
New Instance 2

L

D

RN

New Instance 3

N
V

D
N

How to implement a singleton class?

The following program demonstrates the implementation of singleton class where it prints
the instances created multiple times.

class Singleton:

__instance = None

@staticmethod
def getlInstance():
" Static access method. """

if Singleton.__instance == None:

Singleton()

12

' tutorialspoint

EIMPLYEAGSGYLEARNING

Python Design Patterns

return Singleton.__instance

def __init__ (self):

Virtually private constructor.
if Singleton.__instance != None:

raise Exception("This class is a singleton!")
else:

Singleton.__instance = self

s = Singleton()

print s

s = Singleton.getInstance()

print s

s = Singleton.getInstance()

print s

Output

The above program generates the following output:

-~

Git CMD

.Sing]
__main__.5ingleton insta
<__main__.5ingleton insta

¥

tutorialspoint

13

Python Design Patterns

The number of instances created are same and there is no difference in the objects listed
in output.

14

tutorialspoint

EIMPLYEAEGBYLEARNINTIG

&

5. Python Design Patterns — Factory Pattern

The factory pattern comes under the creational patterns list category. It provides one of
the best ways to create an object. In factory pattern, objects are created without exposing
the logic to client and referring to the newly created object using a common interface.

Factory patterns are implemented in Python using factory method. When a user calls a
method such that we pass in a string and the return value as a new object is implemented
through factory method. The type of object used in factory method is determined by string
which is passed through method.

In the example below, every method includes object as a parameter, which is implemented
through factory method.

How to implement a factory pattem?

Let us now see how to implement a factory pattern.

class Button(object):
html = "
def get _html(self):

return self.html

class Image(Button):

html = ""

class Input(Button):

html = “"<input></input>"

class Flash(Button):

html = "<obj></obj>"

class ButtonFactory():
def create_button(self, typ):
targetclass = typ.capitalize()
return globals()[targetclass]()

button_obj = ButtonFactory()

H
8]

' tutorialspoint

EIMPLYEAGSGYLEARNING

Python Design Patterns

button = ['image', 'input', 'flash']
for b in button:

print button_obj.create_button(b).get_html()

The button class helps to create the html tags and the associated html page. The client

will not have access to the logic of code and the output represents the creation of html
page.

16
*4i N tutorialspoint
|@A P

EIMPLYEAGSY LEARMNING

Python Design Patterns

End of ebook preview
If you liked what you saw...

Buy it from our store @ https://store.tutorialspoint.com

17

tutorialspoint

EIMPLYEAEGBYLEARNINTIG

&

https://store.tutorialspoint.com/

