
spaCy

 i

spaCy

 i

About the Tutorial

spaCy, developed by software developers Matthew Honnibal and Ines Montani, is an

open-source software library for advanced NLP (Natural Language Processing). It is written

in Python and Cython (C extension of Python which is mainly designed to give C like

performance to the Python language programs). spaCy is a relatively new framework but

one of the most powerful and advanced libraries used to implement NLP.

Audience

This tutorial will be useful for graduates, post-graduates, and research students who either

have an interest in NLP or have these subjects as a part of their curriculum. The reader

can be a beginner or an advanced learner.

Prerequisites

The reader must have basic knowledge about NLP and artificial intelligence. He/she should

also be aware about the basic terminologies used in English grammar and Python

programming concepts.

Copyright & Disclaimer

 Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

spaCy

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. spaCy — Introduction ... 1

Extensions and visualisers ... 1

2. spaCy — Getting Started ... 4

3. spaCy — Models and Languages ... 9

4. spaCy — Architecture ... 15

5. spaCy — Command Line Helpers ... 18

6. spaCy — Top-level Functions .. 32

7. spaCy — Visualization Function .. 36

8. spaCy — Utility Functions ... 44

9. spaCy — Compatibility Functions .. 59

10. spaCy — Containers .. 61

11. spaCy — Doc Class ContextManager and Property .. 70

Retokenizer.split .. 72

12. spaCy — Container Token Class .. 78

13. spaCy — Token Properties .. 89

14. spaCy — Container Span Class .. 95

15. spaCy — Span Class Properties ... 103

16. spaCy — Container Lexeme Class .. 110

17. spaCy — Training Neural Network Model ... 117

Steps for Training .. 117

18. spaCy — Updating Neural Network Model ... 120

spaCy

 1

In this chapter, we will understand the features, extensions and visualisers with regards

to spaCy. Also, a features comparison is provided which will help the readers in analysis

of the functionalities provided by spaCy as compared to Natural Language Toolkit (NLTK)

and coreNLP. Here, NLP refers to Natural Language Processing.

What is spaCy?

spaCy, which is developed by the software developers Matthew Honnibal and Ines

Montani, is an open-source software library for advanced NLP. It is written in Python and

Cython (C extension of Python which is mainly designed to give C like performance to the

Python language programs).

spaCy is a relatively a new framework but, one of the most powerful and advanced libraries

which is used to implement the NLP.

Features

Some of the features of spaCy that make it popular are explained below:

Fast: spaCy is specially designed to be as fast as possible.

Accuracy: spaCy implementation of its labelled dependency parser makes it one of the

most accurate frameworks (within 1% of the best available) of its kind.

Batteries included: The batteries included in spaCy are as follows:

 Index preserving tokenization.

 “Alpha tokenization” support more than 50 languages.

 Part-of-speech tagging.

 Pre-trained word vectors.

 Built-in easy and beautiful visualizers for named entities and syntax.

 Text classification.

Extensile: You can easily use spaCy with other existing tools like TensorFlow, Gensim,

scikit-Learn, etc.

Deep learning integration: It has Thinc-a deep learning framework, which is designed

for NLP tasks.

Extensions and visualisers

Some of the easy-to-use extensions and visualisers that comes with spaCy and are free,

open-source libraries are listed below:

Thinc: It is Machine Learning (ML) library optimised for Central Processing Unit (CPU)

usage. It is also designed for deep learning with text input and NLP tasks.

1. spaCy — Introduction

spaCy

 2

sense2vec: This library is for computing word similarities. It is based on Word2vec.

displaCy: It is an open-source dependency parse tree visualiser. It is built with

JavaScript, CSS (Cascading Style Sheets), and SVG (Scalable Vector Graphics).

displaCy ENT: It is a built-in named entity visualiser that comes with spaCy. It is built with

JavaScript and CSS. It lets the user check its model’s prediction in browser.

Feature Comparison

The following table shows the comparison of the functionalities provided by spaCy, NLTK,

and CoreNLP:

Features spaCy NLTK CoreNLP

Python API Yes Yes No

Easy installation Yes Yes Yes

Multi-language Support Yes Yes Yes

Integrated word vectors Yes No No

Tokenization Yes Yes Yes

Part-of-speech tagging Yes Yes Yes

Sentence segmentation Yes Yes Yes

Dependency parsing Yes No Yes

Entity Recognition Yes Yes Yes

Entity linking Yes No No

Coreference Resolution No No Yes

Benchmarks

spaCy has the fastest syntactic parser in the world and has the highest accuracy (within

1% of the best available) as well.

Following table shows the benchmark of spaCy:

System Year Language Accuracy

spaCy v2.x 2017 Python and Cython 92.6

spaCy v1.x 2015 Python and Cython 91.8

ClearNLP 2015 Java 91.7

CoreNLP 2015 Java 89.6

MATE 2015 Java 92.5

spaCy

 3

Turbo 2015 C++ 92.4

spaCy

 4

This chapter will help the readers in understanding about the latest version of spaCy.

Moreover, the readers can learn about the new features and improvements in the

respective version, its compatibility and how to install spaCy.

Latest version

spaCy v3.0 is the latest version which is available as a nightly release. This is an

experimental and alpha release of spaCy via a separate channel named spacy-nightly. It

reflects “future spaCy” and cannot be use for production use.

To prevent potential conflicts, try to use a fresh virtual environment.

You can use the below given pip command to install it:

pip install spacy-nightly --pre

New Features and Improvements

The new features and improvements in the latest version of spaCy are explained below:

Transformer-based pipelines

It features all new transformer-based pipelines with support for multi-task learning. These

new transformer-based pipelines make it the highest accurate framework (within 1% of

the best available).

You can access thousands of pretrained models for your pipeline because, spaCy’s

transformer support interoperates with other frameworks like PyTorch and HuggingFace

transformers.

New training workflow and config system

The spaCy v3.0 provides a single configuration file of our training run.

There are no hidden defaults hence, makes it easy to return our experiments and track

changes.

Custom models using any ML framework

New configuration system of spaCy v3.0 makes it easy for us to customise the Neural

Network (NN) models and implement our own architecture via ML library Thinc.

Manage end-to-end workflows and projects

The spaCy project let us manage and share end-to-end workflow for various use cases and

domains.

It also let us organise training, packaging, and serving our custom pipelines.

2. spaCy — Getting Started

spaCy

 5

On the other hand, we can also integrate with other data science and ML tools like DVC

(Data Vision Control), Prodigy, Streamlit, FastAPI, Ray, etc.

Parallel training and distributed computing with Ray

To speed up the training process, we can use Ray, a fast and simple framework for building

and running distributed applications, to train spaCy on one or more remote machines.

New built-in pipeline components

This is the new version of spaCy following new trainable and rule-based components which

we can add to our pipeline.

These components are as follows:

 SentenceRecognizer

 Morphologizer

 Lemmatizer

 AttributeRuler

 Transformer

 TrainablePipe

New pipeline component API

This SpaCy v3.0 provides us new and improved pipeline component API and decorators

which makes defining, configuring, reusing, training, and analyzing easier and more

convenient.

Dependency matching

SpaCy v3.0 provides us the new DependencyMatcher that let us match the patterns

within the dependency parser. It uses Semgrex operators.

New and updated documentation

It has new and updated documentation including:

 A new usage guide on embeddings, transformers, and transfer learning.

 A guide on training pipelines and models.

 Details about the new spaCy projects and updated usage documentation on custom

pipeline components.

 New illustrations and new API references pages documenting spaCy’s ML model

architecture and projected data formats.

Compatibility

spaCy can run on all major operating systems such as Windows, macOS/OS X, and

Unix/Linux. It is compatible with 64-bit CPython 2.7/3.5+ versions.

spaCy

 6

Installing spaCy

The different options to install spaCy are explained below:

Using package manager

The latest release versions of spaCy is available over both the package managers, pip and

conda. Let us check out how we can use them to install spaCy:

pip: To install Spacy using pip, you can use the following command:

pip install -U spacy

In order to avoid modifying system state, it is suggested to install spacy packages in a

virtual environment as follows:

python -m venv .env

source .env/bin/activate

pip install spacy

conda: To install spaCy via conda-forge, you can use the following command:

conda install -c conda-forge spacy

From source

You can also install spaCy by making its clone from GitHub repository and building it

from source. It is the most common way to make changes to the code base.

But, for this, you need to have a python distribution including the following:

 Header files

 A compiler

 pip

 virtualenv

 git

Use the following commands:

First, update pip as follows:

python -m pip install -U pip

Now, clone spaCy with the command given below:

git clone https://github.com/explosion/spaCy

Now, we need to navigate into directory by using the below mentioned command:

cd spaCy

Next, we need to create environment in .env, as shown below:

spaCy

 7

python -m venv .env

Now, activate the above created virtual environment.

source .env/bin/activate

Next, we need to set the Python path to spaCy directory as follows:

export PYTHONPATH=`pwd`

Now, install all requirements as follows:

pip install -r requirements.txt

At last, compile spaCy:

python setup.py build_ext --inplace

Ubuntu

Use the following command to install system-level dependencies in Ubuntu Operating

System (OS):

sudo apt-get install build-essential python-dev git

macOS/OS X

Actually, macOS and OS X have preinstalled Python and git. So, we need to only install a

recent version of XCode including CLT (Command Line Tools).

Windows

In the table below, there are Visual C++ Build Tools or Visual Studio Express versions

given for official distribution of Python interpreter. Choose on as per your requirements

and install:

DISTRIBUTION VERSION

Python 2.7 Visual Studio 2008

Python 3.4 Visual Studio 2010

Python 3.5+ Visual Studio 2015

Upgrading spaCy

The following points should be kept in mind while upgrading spaCy:

 Start with a clean virtual environment.

 For upgrading spaCy to a new major version, you must have the latest compatible

models installed.

spaCy

 8

 There should be no old shortcut links or incompatible model package in your virtual

environment.

 In case if you have trained your own models, the train and runtime inputs must

match i.e. you must retrain your models with the newer version as well.

The spaCy v2.0 and above provides a validate command, which allows the user to verify

whether, all the installed models are compatible with installed spaCy version or not.

In case if there would be any incompatible models, validate command will print the tips

and installation instructions. This command can also detect out-of-sync model links

created in various virtual environments.

You can use the validate command as follows:

pip install -U spacy

python -m spacy validate

In the above command, python -m is used to make sure that we are executing the correct

version of spaCy.

Running spaCy with GPU

spaCy v2.0 and above comes with neural network (NN) models that can be implemented

in Thinc. If you want to run spaCy with Graphics Processing Unit (GPU) support, use the

work of Chainer’s CuPy module. This module provides a numpy-compatible interface for

GPU arrays.

You can install spaCy on GPU by specifying the following:

 spaCy[cuda]

 spaCy[cuda90]

 spaCy[cuda91]

 spaCy[cuda92]

 spaCy[cuda100]

 spaCy[cuda101]

 spaCy[cuda102]

On the other hand, if you know your cuda version, the explicit specifier allows cupy to

be installed. It will save the compilation time.

Use the following command for the installation:

pip install -U spacy[cuda92]

After a GPU-enabled installation, activate it by calling spacy.prefer_gpu or

spacy.require_gpu as follows:

import spacy

spacy.prefer_gpu()

nlp_model = spacy.load("en_core_web_sm")

spaCy

 9

Let us learn about the languages supported by spaCy and its statistical models.

Language Support

Currently, spaCy supports the following languages:

LANGUAGE CODE

Chinese zh

Danish da

Dutch nl

English en

French fr

German de

Greek el

Italian it

Japanese ja

Lithuanian lt

Multi-language xx

Norwegian Bokmål nb

Polish pl

Portuguese pt

Romanian ro

Spanish es

Afrikaans af

Albanian sq

Arabic ar

Armenian hy

Basque eu

Bengali bn

Bulgarian bg

3. spaCy — Models and Languages

spaCy

 10

Catalan ca

Croatian hr

Czech cs

Estonian et

Finnish fi

Gujarati gu

Hebrew he

Hindi hi

Hungarian hu

Icelandic is

Indonesian id

Irish ga

Kannada kn

Korean ko

Latvian lv

Ligurian lij

Luxembourgish lb

Macedonian mk

Malayalam ml

Marathi mr

Nepali ne

Persian fa

Russian ru

Serbian sr

Sinhala si

Slovak sk

Slovenian sl

Swedish sv

Tagalog tl

Tamil ta

Tatar tt

Telugu te

spaCy

 11

Thai th

Turkish tr

Ukrainian uk

Urdu ur

Vietnamese vi

Yoruba yo

spaCy’s statistical models

As we know that spaCy’s models can be installed as Python packages, which means like

any other module, they are a component of our application. These modules can be

versioned and defined in requirement.txt file.

Installing spaCy’s Statistical Models

The installation of spaCy’s statistical models is explained below:

Using Download command

Using spaCy’s download command is one of the easiest ways to download a model

because, it will automatically find the best-matching model compatible with our spaCy

version.

You can use the download command in the following ways:

The following command will download best-matching version of specific model for your

spaCy version:

python -m spacy download en_core_web_sm

The following command will download best-matching default model and will also create a

shortcut link:

python -m spacy download en

The following command will download the exact model version and does not create any

shortcut link:

python -m spacy download en_core_web_sm-2.2.0 --direct

Via pip

We can also download and install a model directly via pip. For this, you need to use pip

install with the URL or local path of the archive file. In case if you do not have the direct

link of a model, go to model release, and copy from there.

For example,

The command for installing model using pip with external URL is as follows:

spaCy

 12

pip install https://github.com/explosion/spacy-

models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz

The command for installing model using pip with local file is as follows:

pip install /Users/you/en_core_web_sm-2.2.0.tar.gz

The above commands will install the particular model into your site-packages directory.

Once done, we can use spacy.load() to load it via its package name.

Manually

You can also download the data manually and place in into a custom directory of your

choice.

Use any of the following ways to download the data manually:

 Download the model via your browser from the latest release.

 You can configure your own download script by using the URL (Uniform Resource

Locator) of the archive file.

Once done with downloading, we can place the model package directory anywhere on our

local file system. Now to use it with spaCy, we can create a shortcut link for the data

directory.

Using models with spaCy

Here, how to use models with spaCy is explained.

Using custom shortcut links

We can download all the spaCy models manually, as discussed above, and put them in our

local directory. Now whenever the spaCy project needs any model, we can create a

shortcut link so that spaCy can load the model from there. With this you will not end up

with duplicate data.

For this purpose, spaCy provide us the link command which can be used as follows:

python -m spacy link [package name or path] [shortcut] [--force]

In the above command, the first argument is the package name or local path. If you have

installed the model via pip, you can use the package name here. Or else, you have a local

path to the model package.

The second argument is the internal name. This is the name you want to use for the model.

The –-force flag in the above command will overwrite any existing links.

The examples are given below for both the cases.

Example

Given below is an example for setting up shortcut link to load installed package as

“default_model”:

spaCy

 13

python -m spacy link en_core_web_md en_default

An example for setting up shortcut link to load local model as “my_default_model” is

as follows:

python -m spacy link /Users/Leekha/model my_default_en

Importing as module

We can also import an installed model, which can call its load() method with no

arguments as shown below:

import spaCy

import en_core_web_sm

nlp_example = en_core_web_sm.load()

my_doc = nlp_example("This is my first example.")

my_doc

Output

The output is as follows:

This is my first example.

Using own models

You can also use your trained model. For this, you need to save the state of your trained

model using Language.to_disk() method. For more convenience in deploying, you can

also wrap it as a Python package.

Naming Conventions

Generally, the naming convention of [lang_[name]] is one such convention that spaCy

expected all its model packages to be followed.

The name of spaCy’s model can be further divided into following three components:

 Type: It reflects the capabilities of model. For example, core is used for general-

purpose model with vocabulary, syntax, entities. Similarly, depent is used for only

vocab, syntax, and entities.

 Genre: It shows the type of text on which the model is trained. For example, web

or news.

 Size: As name implies, it is the model size indicator. For example, sm (for small),

md (For medium), or lg (for large).

Model versioning

The model versioning reflects the following:

spaCy

 14

 Compatibility with spaCy.

 Major and minor model version.

For example, a model version r.s.t translates to the following:

 r: spaCy major version. For example, 1 for spaCy v1.x.

 s: Model major version. It restricts the users to load different major versions by

the same code.

 t: Model minor version. It shows the same model structure but, different

parameter values. For example, trained on different data for different number of

iterations.

spaCy

 15

This chapter tells us about the data structures in spaCy and explains the objects along

with their role.

Data Structures

The central data structures in spaCy are as follows:

 Doc: This is one of the most important objects in spaCy’s architecture and owns

the sequence of tokens along with all their annotations.

 Vocab: Another important object of central data structure of spaCy is Vocab. It

owns a set of look-up tables that make common information available across

documents.

The data structure of spaCy helps in centralising strings, word vectors, and lexical

attributes, which saves memory by avoiding storing multiple copies of the data.

Objects and their role

The objects in spaCy along with their role and an example are explained below:

Span

It is a slice from Doc object, which we discussed above. We can create a Span object

from the slice with the help of following command:

doc[start : end]

Example

An example of span is given below:

import spacy

import en_core_web_sm

nlp_example = en_core_web_sm.load()

my_doc = nlp_example("This is my first example.")

span = my_doc[1:6]

span

Output

The output is as follows:

is my first example.

4. spaCy — Architecture

spaCy

 16

Token

As the name suggests, it represents an individual token such as word, punctuation,

whitespace, symbol, etc.

Example

An example of token is stated below:

import spacy

import en_core_web_sm

nlp_example = en_core_web_sm.load()

my_doc = nlp_example("This is my first example.")

token = my_doc[4]

token

Output

The output is as follows:

example

Tokenizer

As name suggests, tokenizer class segments the text into words, punctuations marks etc.

Example

This example will create a blank tokenizer with just the English vocab:

from spacy.tokenizer import Tokenizer

from spacy.lang.en import English

nlp_lang = English()

blank_tokenizer = Tokenizer(nlp_lang.vocab)

blank_tokenizer

Output

The output is given below:

<spacy.tokenizer.Tokenizer at 0x26506efc480>

Language

It is a text-processing pipeline which, we need to load once per process and pass the

instance around application. This class will be created, when we call the method

spacy.load().

It contains the following:

 Shared vocabulary

spaCy

 17

 Language data

 Optional model data loaded from a model package

 Processing pipeline containing components such as tagger or parser.

Example

This example of language will initialise English Language object:

from spacy.vocab import Vocab

from spacy.language import Language

nlp_lang = Language(Vocab())

from spacy.lang.en import English

nlp_lang = English()

nlp_lang

Output

When you run the code, you will see the following output:

<spacy.lang.en.English at 0x26503773cf8>

spaCy

 18

This chapter gives information about the command line helpers used in spaCy.

Why Command Line Interface?

spaCy v1.7.0 and above comes with new command line helpers. It is used to download as

well as link the models. You can also use it to show the useful debugging information. In

short, command line helpers are used to download, train, package models, and also to

debug spaCy.

Checking Available Commands

You can check the available commands by using spacy - -help command.

The example to check the available commands in spaCy is given below:

C:\Users\Leekha>python -m spacy --help

Output

The output shows the available commands.

Available commands

download, link, info, train, pretrain, debug-data, evaluate, convert, package,

init-model, profile, validate

Available Commands

The commands available in spaCy are given below along with their respective descriptions.

Command Description

Download To download models for spaCy.

Link To create shortcut links for models.

Info To print the information.

Validate To check compatibility of the installed models.

Convert To convert the files into spaCy's JSON format.

Pretrain To pre-train the “token to vector (tok2vec)” layer of pipeline

components.

Init-model To create a new model directory from raw data.

Evaluate To evaluate a model's accuracy and speed.

5. spaCy — Command Line Helpers

spaCy

 19

Package To generate a model python package from an existing model data

directory.

Debug-

data

To analyse, debug, and validate our training and development data.

Train To train a model.

Download command

As name implies, this command is used to download models for spacy. It works by finding

the best-matching compatible version. Then, it uses the pip install command to download

the model as a package. If the model was downloaded via a shortcut, this command will

also create a shortcut link.

The download command is convenient, and is an interactive wrapper as compared to direct

download because, it performs compatibility checks while downloading the models. It also

prints detailed messages in case if the things go wrong.

The download command is as follows:

python -m spacy download [model] [--direct] [pip args]

Arguments

The table below explains its arguments:

ARGUMENT TYPE DESCRIPTION

Model Positional Here, we need to give model name or shortcut. For example,

en, de, en_core_web_sm.

--direct, -d Flag It will force direct download of exact model version.

pip args - It represents the additional installation options to be passed

to pip install, while installing the model package. For

example, --user to install to the user home directory. This

feature is new and was introduced in version2.1.

--help, -h Flag This argument will show help message and other available

arguments.

Link command

As name implies, this command will create a shortcut link for models. The models can

either be a Python package or a local directory. The shortcut link enables the users to let

them load models from any location using a custom name via spacy.load().

The Link command is as follows:

python -m spacy link [origin] [link_name] [--force]

Arguments

spaCy

 20

The table below explains its arguments:

ARGUMENT TYPE DESCRIPTION

Origin positional Here we need to provide the model name, whether it is

package, or path to local directory.

link_name positional It is the name of the shortcut link to create.

--force, -f flag This argument will force overwriting of existing link.

--help, -h flag This argument will show help message and other

available arguments.

Info command

As name implies, this command will print the information about:

 spaCy installation

 models

 local setups

It also generates Markdown-formatted markup to copy-paste into GitHub issues.

The Info command is as follows:

python -m spacy info [model] [--markdown] [--silent]

Arguments

The table below explains its arguments:

ARGUMENT TYPE DESCRIPTION

Model positional Here we need to provide the model name whether, it

is package, or path (optional).

--markdown, -

md

Flag It will print the information as Markdown.

--silent, -s Flag It will not print anything but just return the values. This

feature is new and was introduced in version2.0.12.

--help, -h Flag This argument will show help message and other

available arguments.

Example

The below command will give the info about en_core_web_sm installed model.

C:\Users\Leekha>python -m spacy info en_core_web_sm

Output

This produces the following output:

spaCy

 21

===================== Info about model 'en_core_web_sm' =====================

lang en

name core_web_sm

license MIT

author Explosion

url https://explosion.ai

email contact@explosion.ai

description English multi-task CNN trained on OntoNotes. Assigns context-

specific token vectors, POS tags, dependency parse and named entities.

sources [{'name': 'OntoNotes 5', 'url':

'https://catalog.ldc.upenn.edu/LDC2013T19', 'license': 'commercial (licensed by

Explosion)'}]

pipeline ['tagger', 'parser', 'ner']

version 2.2.0

spacy_version >=2.2.0

parent_package spacy

labels {'tagger': ['$', "''", ',', '-LRB-', '-RRB-', '.', ':', 'ADD',

'AFX', 'CC', 'CD', 'DT', 'EX', 'FW', 'HYPH', 'IN', 'JJ', 'JJR', 'JJS', 'LS',

'MD', 'NFP', 'NN', 'NNP', 'NNPS', 'NNS', 'PDT', 'POS', 'PRP', 'PRP$', 'RB',

'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ',

'WDT', 'WP', 'WP$', 'WRB', 'XX', '_SP', '``'], 'parser': ['ROOT', 'acl',

'acomp', 'advcl', 'advmod', 'agent', 'amod', 'appos', 'attr', 'aux', 'auxpass',

'case', 'cc', 'ccomp', 'compound', 'conj', 'csubj', 'csubjpass', 'dative',

'dep', 'det', 'dobj', 'expl', 'intj', 'mark', 'meta', 'neg', 'nmod',

'npadvmod', 'nsubj', 'nsubjpass', 'nummod', 'oprd', 'parataxis', 'pcomp',

'pobj', 'poss', 'preconj', 'predet', 'prep', 'prt', 'punct', 'quantmod',

'relcl', 'xcomp'], 'ner': ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE',

'LANGUAGE', 'LAW', 'LOC', 'MONEY', 'NORP', 'ORDINAL', 'ORG', 'PERCENT',

'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']}

source C:\Users\Leekha\Anaconda3\lib\site-packages\en_core_web_sm

Validate command

As name implies, this command will find all the models installed in the current

environment, packages as well as shortcut links, and check their compatibility with the

current installed version of spaCy. It is recommended to run this command after upgrading

spaCy.

The Validate command is as follows:

python -m spacy validate

The command will print the details about the compatibility of your installed models.

spaCy

 22

Example

An example for the validate command is stated below:

C:\Users\Leekha>python -m spacy validate

Output

Given below is the output of the code:

✔ Loaded compatibility table

====================== Installed models (spaCy v2.2.1) ======================

spaCy installation: C:\Users\Leekha\Anaconda3\lib\site-packages\spacy

TYPE NAME MODEL VERSION

package en-core-web-sm en_core_web_sm 2.2.0 ✔

package en-core-web-md en_core_web_md 2.2.0 ✔

Convert command

As name implies, this command will convert files into spaCy’s JavaScript Object Notation

(JSON) format especially for the use with the train command and other experiment

management functions.

The Convert command is as follows:

python -m spacy convert [input_file] [output_dir] [--file-type] [--converter][-

-n-sents] [--morphology] [--lang]

Arguments

The table below explains its arguments:

ARGUMENT TYPE DESCRIPTION

input_file positional It represents the input file.

output_dir positional This argument represents the output directory for

converted file. Defaults to "-", meaning data will be

written to stdout.

--file-type, -t option It is the type of file to create.

--converter, -c option It represents the name of the converter to use.

--n-sents, -n option It represents the number of sentences per document.

--seg-sents, -s flag It is used for Segment sentences (for -c ner).

spaCy

 23

--model, -b option It represents the model for parser-based sentence

segmentation (for -s).

--

morphology, -

m

option This argument enables appending morphology to tags.

--lang, -l option It is the language code and used if tokenizer required.

--help, -h flag This argument will show help message and other

available arguments.

Following are the output file types, which can be generated with this command:

 json: It is regular JSON and default output file type.

 jsonl: It is Newline-delimited JSON.

 msg: It is Binary MessagePack format.

Converter Options

Following table shows the converter options:

ID DESCRIPTION

Auto It will automatically pick converter based on file extension

and file content.

conll, conllu, conllubio These are the universal

dependencies .conllu or .conll format.

Ner It is NER with IOB/IOB2 tags. In this, one token per line

with columns is separated by whitespace. The first column

is the token and the final column is the IOB tag. The

sentences are separated by blank lines and documents are

separated by the line -DOCSTART- -X- O O. Supports

CoNLL 2003 NER format.

Iob It is NER with IOB/IOB2 tags. In this, one sentence per line

with tokens separated by whitespace and annotation

separated by |, either word|B-ENT or word|POS|B-

ENT.

Jsonl It is NER data formatted as JSONL with one dict per line

and a "text" and "spans" key.

Pretrain command

It is used to pre-train the “token to vector (tok2vec)” layer of pipeline components. For

this purpose, it uses an approximate language-modeling objective.

The working can be understood with the help of following points:

 First, we need to load the pretrained vectors and then, train a component like CNN

to predict vectors which will further match the pretrained ones.

 It will save the weights to a directory after each epoch.

spaCy

 24

 Once saved, we can now pass a path to one of these pretrained weights files to the

train command.

 Now for loading weights back in during spacy train, it is recommended to ensure

that all settings between pretraining and training are same.

The Pretrain command is as follows:

python -m spacy pretrain [texts_loc] [vectors_model] [output_dir][--width] [--

conv-depth] [--cnn-window] [--cnn-pieces] [--use-chars] [--sa-depth][--embed-

rows] [--loss_func] [--dropout] [--batch-size] [--max-length][--min-length] [-

-seed] [--n-iter] [--use-vectors] [--n-save-every][--init-tok2vec] [--epoch-

start]

Arguments

The table below explains its arguments:

ARGUMENT TYPE DESCRIPTION

texts_loc positional This argument takes path to JSONL file with raw

texts to learn from. The text is provided as the

key "text" or tokens as the key "tokens".

vectors_model positional It is the path or name to spaCy model with vectors

to learn from.

output_dir positional This argument represents the directory to write

models to on each epoch.

--width, -cw option It represents the width of CNN layers.

--conv-depth, -cd option It represents the depth of CNN layers.

--cnn-window, -

cW

option Introduced in version 2.2.2, represents the window

size for CNN layers.

--cnn-pieces, -cP option Introduced in version 2.2.2, represents Maxout size

for CNN layers. For example, 1 for Mish.

--use-chars, -chr flag Introduced in version 2.2.2, defines whether to use

character-based embedding or not.

--sa-depth, -sa option Introduced in version 2.2.2, represents the Depth

of self-attention layers.

--embed-rows, -

er

option This argument takes the number of embedding

rows.

--loss-func, -L option It represents the Loss function to use for the

objective. For example, it can be

either "cosine", "L2" or "characters".

--dropout, -d option It represents the dropout rate.

--batch-size, -bs option It is the number of words per training batch.

spaCy

 25

--max-length, -

xw

option With this argument, you can specify maximum

words per example. Longer examples than

specified length would be discarded.

--min-length, -nw option With this argument, you can specify minimum

words per example. Shorter examples than

specified length would be discarded.

--seed, -s option As name implies, it is the seed for random number

generators.

--n-iter, -i option This argument is used to specify the number of

iterations to pretrain.

--use-vectors, -uv flag It defines whether to use the static vectors as input

features or not.

--n-save-every, -

se

option This argument will save the model every X batches.

--init-tok2vec, -

t2v

option Introduced in version 2.1, defines the path to

pretrained weights for the token-to-vector parts of

the models.

--epoch-start, -es option Introduced in version 2.1.5, represents the epoch

to start counting at. It would only be relevant when

using --init-tok2vec and the given weight file has

been renamed. It also prevents unintended

overwriting of existing weight files.

Following are the JSON format for raw text:

 text: Its type is Unicode, and it represents the raw input text. It would not be

required if tokens are available. It is regular JSON and default output file type.

 tokens: Its type is list and takes one string per token. It is used for optional

tokenization.

Init Model

Like spacy model command in version 1.x, Init model command is used to create a new

model directory from raw data such as Brown clusters and word vectors.

 The Init model command is as follows:

python -m spacy init-model [lang] [output_dir] [--jsonl-loc] [--vectors-loc][--

prune-vectors]

Arguments

The table below explains its arguments:

spaCy

 26

ARGUMENT TYPE DESCRIPTION

lang positional It represents the model language ISO code. For

example, en.

output_dir positional This argument represents the model output directory.

It will be created if it does not already exist.

--jsonl-loc, -j option It represents an optional location of JSONL-

formatted vocabulary file with the lexical attributes.

--vectors-

loc, -v

option It represents an optional location of vectors. It should

be a file where, the first row contains the dimensions of

the vectors and followed by a space-separated

Word2Vec table. The file can be provided either

in .txt format or as a zipped text file

in .zip or .tar.gz format.

--truncate-

vectors, -t

option Introduced in version 2.3, represents the number of

vectors to truncate to when reading in vectors file. The

default value is 0 indicates no truncation.

--prune-

vectors, -V

option This argument represents the number of vectors to

prune the vocabulary to. The default value is -

1 indicates no pruning.

--vectors-

name, -vn

option It is the name that is to be assigned to the word vectors

in the meta.json. For example,

en_core_web_md.vectors.

--omit-extra-

lookups, -OEL

flag Introduced in version 2.3, it will omit any of the extra

lookups tables (cluster/prob/sentiment) from spacy-

lookups-data in the model.

Evaluate Command

As name implies, this command will evaluate a model accuracy and speed. It will be done

on JSON’-formatted annotated data. Evaluate command will print the results and optionally

export displaCy visualisations of a sample set of parsers to HTML files (.html).

On the other hand, if the respective component is present in the model’s pipeline, the

visualizations for dependency parse and NER will be exported as separate files.

The Evaluate command is as follows:

python -m spacy evaluate [model] [data_path] [--displacy-path] [--displacy-

limit][--gpu-id] [--gold-preproc] [--return-scores]

Arguments

The table below explains its arguments:

spaCy

 27

ARGUMENT TYPE DESCRIPTION

model positional This argument represents the model to be evaluated.

It can be either a package or shortcut link name, or a

path to a model data directory.

data_path positional It is the location of JSON-formatted evaluation data.

--displacy-

path, -dp

option This argument is the directory to output rendered

parses as HTML. If this argument is not set, then no

visualisations will be generated.

--displacy-

limit, -dl

option It represents the number of parses to generate per file.

The default value is 25.

--gpu-id, -g option If you want to use GPU, you need to define here. The

default value of -1 is for CPU.

--gold-

preproc, -G

flag This argument is for the use of gold preprocessing.

--return-

scores, -R

flag It will return dict containing model scores.

Package Command

As name implies, this command will generate a model python package from an existing

model data directory. Using this command, all the data files are copied over. For example,

if the path to a file meta.json is supplied, this file will be used.

On the other hand, the data can also be entered directly from the command line as well.

Once packaging is done, to turn the model into an installable archive file, we can run

python setup.py sdist.

The Package command is as follows:

python -m spacy package [input_dir] [output_dir] [--meta-path] [--create-meta]

[--force]

Arguments

The table below explains its arguments:

ARGUMENT TYPE DESCRIPTION

input_dir positional This represents the path to directory which contains

model data.

output_dir positional This represents the directory to create package folder

in.

--meta-

path, -m

option Introduced in version 2.0, represents the path

to meta.json file. It is optional.

spaCy

 28

--create-

meta, -c V2.0

flag Introduced in version 2.0, this argument will create

a meta.json file on the command line, even if one

already exists in the directory. But, if an existing file is

found, the entries will be shown as the defaults in the

command line prompt.

--force, -f flag It will force overwriting of existing folder in output

directory.

--help, -h flag This argument will show help message and other

available arguments.

Debug-data Command

With the help of this command, we can analyse, debug, and validate our training and

development data. We can also get some useful statistics, invalid entity annotations, cyclic

dependencies, and low data labels etc.

The Debug-data command is as follows:

python -m spacy debug-data [lang] [train_path] [dev_path] [--base-model] [--

pipeline] [--ignore-warnings] [--verbose] [--no-format]

Arguments

The table below explains its arguments:

ARGUMENT TYPE DESCRIPTION

lang Positional This argument represents the model language.

train_path Positional This is the location of JSON-formatted training data

which can be either a file or a directory of files.

dev_path Positional This is the location of JSON-formatted development

data for evaluation, which can either be a file or a

directory of files.

--tag-map-

path, -tm V2.2.4

Option Introduced in version 2.2.4 representing the

location of JSON-formatted tag map.

--base-model, -b Option This argument is the name of base model to update.

It is optional. It can be any loadable spaCy model.

--pipeline, -p Option This is comma-separated names of pipeline

components to train. The default value is

'tagger,parser,ner'.

--ignore-

warnings, -IW

Flag As name implies, this argument will ignore the

warnings and only show statistics as well as errors.

--verbose, -V Flag It will print additional information and explanations.

–no-format, -NF Flag It will print the results. You can use this argument,

if you want to write to a file.

spaCy

 29

Train Command

As name implies, this command will train a model. The output will be in spaCy’s JSON

format and on every epoch the model will be saved out to the directory.

To package the model using spaCy package command, model details and accuracy scores

will be added to meta.json file.

The Train command is as follows:

python -m spacy [lang] [output_path] [train_path] [dev_path]

[--base-model] [--pipeline] [--vectors] [--n-iter] [--n-early-stopping][--n-

examples] [--use-gpu] [--version] [--meta-path] [--init-tok2vec][--parser-

multitasks] [--entity-multitasks] [--gold-preproc] [--noise-level][--orth-

variant-level] [--learn-tokens] [--textcat-arch] [--textcat-multilabel][--

textcat-positive-label] [--verbose]

Arguments

The table below explains its arguments:

ARGUMENT TYPE DESCRIPTION

Lang positional This argument is used for model language.

output_path positional This argument represents the directory to store

model in. It will be created if it does not pre-exist.

train_path positional It is the location of JSON-formatted training data

which can be a file or a directory of files.

dev_path positional It is the location of JSON-formatted development

data for evaluation which can be a file or a directory

of files.

--base-model, -

b

option Introduced in version 2.1, represents the name of the

base model to update. It is optional and can be any

loadable spaCy model.

--pipeline, -p option It is also introduced in version 2.1. This is comma-

separated names of pipeline components to train. The

default value is 'tagger,parser,ner'.

--replace-

components, -R

flag This argument will replace components from the base

model.

--vectors, -v option It is the model from which the vectors should be

loaded.

--n-iter, -n option It will give the number of iterations. The default value

is 30.

--n-early-

stopping, -ne

option It represents the maximum number of training

epochs without dev accuracy improvement.

spaCy

 30

--n-examples, -

ns

option It will be the number of examples to use. The default

value of 0 will use all examples.

--use-gpu, -g option Use this argument if you want to use GPU. You need

to provide GPU-ID. The default value of -1 will be for

CPU only.

--version, -V option It will be the model version.

--meta-path, -

m

option Introduced in version 2.0, represents an optional path

to model meta.json. It will overwrite all the relevant

properties like lang, pipeline and spacy_version.

--init-tok2vec, -

t2v

option Introduced in version 2.1, represents the path to

pretrained weights for the token-to-vector parts of

the models.

--parser-

multitasks, -pt

option It is the side objectives for parser CNN. For

example, 'dep' or 'dep,tag'

--entity-

multitasks, -et

option It is the side objectives for NER CNN. For

example, 'dep' or 'dep,tag'

--width, -cw option Introduced in version 2.2.4, represents the width of

CNN layers of Tok2Vec component.

--conv-depth, -

cd

option Introduced in version 2.2.4, represents the depth of

CNN layers of Tok2Vec component.

--cnn-window, -

cW

option Introduced in version 2.2.4, represents the window

size for CNN layers of Tok2Vec component.

--cnn-pieces, -

cP

option Introduced in version 2.2.4, represents the maxout

size for CNN layers of Tok2Vec component.

--bilstm-

depth, -lstm

option Introduced in version 2.2.4, represents the depth of

BiLSTM layers of Tok2Vec component.

--embed-

rows, -er

option Introduced in version 2.2.4, represents the number

of embedding rows of Tok2Vec component.

--noise-level, -

nl

option This argument indicates the amount of corruption for

data augmentation. The value will be in float.

--orth-variant-

level, -ovl

option This argument indicates the orthography variation for

data augmentation.

--gold-

preproc, -G

flag This flag will use gold preprocessing.

--learn-

tokens, -T

flag It is flag and Make parser learn gold-standard

tokenization by merging the sub-tokens. It is typically

used for languages like Chinese.

--textcat-

multilabel, -

TML

flag Introduced in version 2.2, represents the text

classification classes are not mutually exclusive

(multilabel).

spaCy

 31

--textcat-

arch, -ta

option Introduced in version 2.2, represents the text

classification model architecture. Default value

is "bow".

--textcat-

positive-label, -

tpl

option Introduced in version 2.2, represents the text

classification positive label for binary classes with two

labels.

--tag-map-

path, -tm

option Introduced in version 2.2.4, represents the location

of JSON-formatted tag map.

--verbose, -VV flag Introduced in version 2.0.13,shows more detailed

messages during training.

--help, -h flag This argument is used to show help message and

available arguments.

spaCy

 32

Here, we will be discussing some of the top-level functions used in spaCy. The functions

along with the descriptions are listed below:

Command Description

spacy.load() To load a model.

spacy.blank() To create a blank model.

spacy.info() To provide information about the installation, models and local

setup from within spaCy.

spacy.explain() To give a description.

spacy.prefer_gpu() To allocate data and perform operations on GPU.

spacy.require_gpu() To allocate data and perform operations on GPU.

spacy.load()

As the name implies, this spacy function will load a model via following:

 Its shortcut links.

 The name of the installed model package.

 A Unicode paths.

 Path-like object.

spaCy will try to resolve the load argument in the below given order:

 If a model is loaded from a shortcut link or package name, spaCy will assume it as

a Python package and call the model’s own load() method.

 On the other hand, if a model is loaded from a path, spacy will assume it is a data

directory and hence initialize the Language class.

Upon using this function, the data will be loaded in via Language.from_disk.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

name unicode

/ Path

It is the shortcut link, package name or path of the model

to load.

disable List It represents the names of pipeline components to disable.

6. spaCy — Top-level Functions

spaCy

 33

Example

In the below examples, spacy.load() function loads a model by using shortcut link,

package, unicode path and a pathlib path:

Following is the command for spacy.load() function for loading a model by using the

shortcut link:

nlp_model = spacy.load("en")

Following is the command for spacy.load() function for loading a model by using package:

nlp_model = spacy.load("en_core_web_sm")

Following is the command for spacy.load() function for loading a model by using the

Unicode path:

nlp_model = spacy.load("/path/to/en")

Following is the command for spacy.load() function for loading a model by using the

pathlib path:

nlp_model = spacy.load(Path("/path/to/en"))

Following is the command for spacy.load() function for loading a model with all the

arguments:

nlp_model = spacy.load("en_core_web_sm", disable=["parser", "tagger"])

spacy.blank()

It is the twin of spacy.blank() function, creates a blank model of a given language class.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

name unicode It represents the ISO code of the language class to be loaded.

disable list This argument represents the names of pipeline components

to be disabled.

Example

In the below examples, spacy.blank() function is used for creating a blank model of “en”

language class.

nlp_model_en = spacy.blank("en")

spaCy

 34

spacy.info()

Like info command, spacy.info() function provides information about the installation,

models, and local setup from within spaCy.

If you want to get the model meta data as a dictionary, you can use the meta-attribute

on your nlp object with a loaded model. For example, nlp.meta.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

model unicode It is the shortcut link, package name or path of a model.

markdown bool This argument will print the information as Markdown.

Example

An example is given below:

spacy.info()

spacy.info("en")

spacy.info("de", markdown=True)

spacy.explain()

This function will give us a description for the following:

 POS tag

 Dependency label

 Entity type

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

term unicode It is the term which we want to be explained.

Example

An example for the use of spacy.explain() function is mentioned below:

import spacy

import en_core_web_sm

nlp= en_core_web_sm.load()

spaCy

 35

spacy.explain("NORP")

doc = nlp("Hello TutorialsPoint")

for word in doc:

 print(word.text, word.tag_, spacy.explain(word.tag_))

Output

The output is as follows:

Hello UH interjection

TutorialsPoint NNP noun, proper singular

spacy.prefer_gpu()

If you have GPU, this function will allocate data and perform operations on GPU. But the

data and operations will not be moved to GPU, if they are already available on CPU. It will

return a Boolean output whether the GPU was activated or not.

Example

An example for the use of spacy.prefer_gpu() is stated below:

import spacy

activated = spacy.prefer_gpu()

nlp = spacy.load("en_core_web_sm")

spacy.require_gpu()

This function is introduced in version 2.0.14 and it will also allocate data and perform

operations on GPU. It will raise an error if there is no GPU available. The data and

operations will not be moved to GPU, if they are already available on CPU.

It is recommended that this function should be called right after importing spacy and

before loading any of the model. It will also return a Boolean type output.

Example

An example for the use of spacy.require_gpu() function is as follows:

import spacy

spacy.require_gpu()

nlp = spacy.load("en_core_web_sm")

spaCy

 36

Visualizer functions are mainly used to visualize the dependencies and also the named

entities in browser or in a notebook. As of spacy version 2.0, there are two popular

visualizers namely displaCy and displaCyENT.

They both are the part of spacy’s built-in visualization suite. By using this visualization

suite namely displaCy, we can visualize a dependency parser or named entity in a text.

displaCy()

Here, we will learn about the displayCy dependency visualizer and displayCy entity

visualizer.

Visualizing the dependency parse

The displaCy dependency visualizer (dep) will show the POS(Part-of-Speech) tags and

syntactic dependencies.

Example

An example for the use of displaCy() dependency visualizer for visualizing the dependency

parse is given below:

import spacy

from spacy import displacy

nlp = spacy.load("en_core_web_sm")

doc = nlp("This is Tutorialspoint.com.")

displacy.serve(doc, style="dep")

Output

This gives the following output:

We can also specify a dictionary of settings to customize the layout. It will be under

argument option (we will discuss in detail later).

The example with options is given below:

7. spaCy — Visualization Function

spaCy

 37

import spacy

from spacy import displacy

nlp = spacy.load("en_core_web_sm")

doc = nlp("This is Tutorialspoint.com.")

options = {"compact": True, "bg": "#09a3d5",

 "color": "red", "font": "Source Sans Pro"}

displacy.serve(doc, style="dep", options=options)

Output

Given below is the output:

Visualizing named entities

The displaCy entity visualizer (ent) will highlight named entities and their labels in a text.

Example

An example for the use of displaCy entity visualizer for named entities is given below:

import spacy

from spacy import displacy

text = "When Sebastian Thrun started working on self-driving cars at Google in

2007, few people outside of the company took him seriously. But Google is

starting from behind. The company made a late push into hardware, and Apple's

Siri has clear leads in consumer adoption."

nlp = spacy.load("en_core_web_sm")

doc = nlp(text)

displacy.serve(doc, style="ent")

spaCy

 38

Output

The output is stated below:

We can also specify a dictionary of settings to customize the layout. It will be under

argument option (we will discuss in detail later).

The example with options is given below:

import spacy

from spacy import displacy

text = "When Sebastian Thrun started working on self-driving cars at Google in

2007, few people outside of the company took him seriously. But Google is

starting from behind. The company made a late push into hardware, and Apple's

Siri has clear leads in consumer adoption."

nlp = spacy.load("en_core_web_sm")

doc = nlp(text)

colors = {"ORG": "linear-gradient(90deg, #aa9cfc, #fc9ce7)"}

options = {"ents": ["ORG"], "colors": colors}

displacy.serve(doc, style="ent", options=options)

Output

The output is mentioned below:

spaCy

 39

displaCy() methods

As of version 2.0, displaCy () function has two methods namely serve and render. Let’s

discuss about them in detail. A table is given below of the methods along with their

respective descriptions.

Method Description

displayCy.serve It will serve the dependency parse tree.

displayCy.render It will render the dependency parse tree.

displaCy.serve

It is the method that will serve a dependency parse tree/ named entity visualization to see

in a web browser. It will run a simple web browser.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION DEFAULT

Docs list,

doc,

Span

It represents the document to visualize.

Style Unicode We have two visualization style namely ‘dep’, or

‘ent’.

The default

value is

‘dep’.

Page bool It will render the markup as full HTML page. The default

value is

true.

minify bool This argument will minify the HTML markup. The default

value is

false.

spaCy

 40

options dict It represents the visualizers-specific options. For

example, colors.

{}

manual bool This argument will not parse Doc and instead,

expect a dict or list of dicts.

The default

value is

false.

Port int It is the port number to serve visualization. 5000

Host unicode It is the Host number to serve visualization. '0.0.0.0'

Example

An example for displayCy.serve method is given below:

import spacy

from spacy import displacy

nlp = spacy.load("en_core_web_sm")

doc1 = nlp("This is Tutorialspoint.com")

displacy.serve(doc1, style="dep")

Output

This gives the following output:

displaCy.render

This displaCy method will render a dependency parse tree or named entity visualization.

Arguments

The table below explains its arguments:

spaCy

 41

NAME TYPE DESCRIPTION DEFAULT

Docs list,

doc,

Span

It represents the document to visualize.

Style Unicode We have two visualization style namely ‘dep’, or

‘ent’.

The default

value is

‘dep’.

Page Bool It will render the markup as full HTML page. The default

value is

false.

minify Bool This argument will minify the HTML markup. The default

value is

false.

options Dict It represents the visualizers-specific options. For

example, colors.

{}

manual Bool This argument will not parse Doc and instead,

expect a dict or list of dicts.

The default

value is

false.

jupyter Bool To return markup ready to be rendered in a

notebook, this argument will explicitly enable or

disable the Jupyter mode. If we will not provide

this argument, it will automatically detect.

None

Example

An example for the displaCy.render method is stated below:

import spacy

from spacy import displacy

nlp = spacy.load("en_core_web_sm")

doc = nlp("This is Tutorialspoint.")

html = displacy.render(doc, style="dep")

Output

The output is as follows:

spaCy

 42

Visualizer options

The option argument of dispaCy () function lets us specify additional settings for each

visualizer, dependency as well as named entity visualizer.

Dependency Visualizer options

The table below explains the Dependency Visualizer options:

NAME TYPE DESCRIPTION DEFAULT

fine_grained bool Put the value of this argument True, if you

want to use fine-grained part-of-speech

tags (Token.tag_), instead of coarse-

grained tags (Token.pos_).

The default value is

False.

add_lemma bool Introduced in version 2.2.4, this argument

prints the lemma’s in a separate row below

the token texts.

The default value is

False.

collapse_punct bool It attaches punctuation to the tokens. The default value is

True.

collapse_phrases bool This argument merges the noun phrases

into one token.

The default value is

False.

compact bool If you will take this argument as true, you

will get the “Compact mode” with square

arrows that takes up less space.

The default value is

False.

color unicod

e

As name implies, this argument is for the

text color (HEX, RGB or color names).

'#000000'

bg unicod

e

As name implies, this argument is for the

Background color (HEX, RGB or color

names).

'#ffffff'

font unicod

e

It is for the font name. Default value is

'Arial'.

spaCy

 43

offset_x int This argument is used for spacing on left

side of the SVG in px.

The default value of

this argument is 50.

arrow_stroke int This argument is used for adjusting the

width of arrow path in px.

The default value of

this argument is 2.

arrow_width int This argument is used for adjusting the

width of arrow head in px.

The default value of

this argument is

10 / 8 (compact).

arrow_spacing int This argument is used for adjusting the

spacing between arrows in px to avoid

overlaps.

The default value of

this argument is

20 / 12 (compact).

word_spacing int This argument is used for adjusting the

vertical spacing between words and arcs in

px.

The default value of

this argument is 45.

distance int This argument is used for adjusting the

distance between words in px.

The default value of

this argument is

175 / 150 (compact

).

Named Entity Visualizer options

The table below explains the Named Entity Visualizer options:

NAME TYPE DESCRIPTION DEFAULT

ents list It represents the entity types to highlight.

Put None for all types.

The default value is

None.

colors Dict As name implies, it is use for color

overrides. The entity types in uppercase

must mapped to color name.

{}

spaCy

 44

We can find some small collection of spaCy’s utility functions in spacy/util.py. Let us

understand those functions and their usage.

The utility functions are listed below in a table with their descriptions.

Utility Function Description

Util.get_data_path To get path to the data directory.

Util.set_data_path To set custom path to the data directory.

Util.get_lang_class To import and load a Language class.

Util.set_lang_class To set a custom Language class.

Util.lang_class_is_loaded To find whether a Language class is already loaded

or not.

Util.load_model This function will load a model.

Util.load_model_from_path This function will load a model from a data directory

path.

Util.load_model_from_init_py It is a helper function which is used in the load()

method of a model package.

Util.get_model_meta To get a model’s meta.json from a directory path.

Util.update_exc This function will update, validate, and overwrite

tokenizer expectations.

Util.is_in_jupyter To check whether we are running the spacy from a

Jupyter notebook.

Util.get_package_path To get the path of an installed spacy package.

Util.is_package To validate model packages.

Util.compile_prefix_regex This function will compile a sequence of prefix rules

into a regex object.

Util.compile_suffix_regex This function will compile a sequence of suffix rules

into a regex object.

Util.compile_infix_regex This function will compile a sequence of infix rules

into a regex object.

Util.compounding This function will yield an infinite series of

compounding values.

Util.decaying This function will yield an infinite series of linearly

decaying values.

8. spaCy — Utility Functions

spaCy

 45

Util.itershuffle To shuffle an iterator.

Util.filter_spans To filter a sequence of span objects and to remove

the duplicates.

Util.get_data_path

This function is used to get path to the data directory where spaCy looks for models. The

default path is spacy/data. The output of this function would be a Data Path or none.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

require_exists bool It will return path if it exists, otherwise it will return None.

Example

An example for util.get_data_path() function is stated below:

import spacy

spacy.util.get_data_path()

Output

The output is as follows:

WindowsPath('C:/Users/Leekha/Anaconda3/lib/site-packages/spacy/data')

Util.set_data_path

This function is used to set custom path to the data directory, where spaCy looks for

models.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

Path unicode/Path It will be the path to the new data directory where spacy

looks for models.

Example

An example for util.set_data_path() function is as follows:

import spacy

spacy.util.set_data_path(r"C:\Users\Leekha\Anaconda3\pkgs")

spaCy

 46

spacy.util.get_data_path()

Output

The output is given below:

WindowsPath('C:/Users/Leekha/Anaconda3/pkgs')

You can see from the above output it has changed the path to the path we have provided.

Util.get_lang_class

As the name implies, this function is used to import and load a Language class. It will

return a Language class for which, we also add a custom language code using

util.set_lang_class function.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

lang unicode It will be a two-letter language code. For example, ‘de’ for

German.

Example

An example for util.get_lang_class() function is as follows:

import spacy

for language_id in ["de"]:

 language_class = spacy.util.get_lang_class(language_id)

 language = language_class()

language

Output

The output is mentioned below:

<spacy.lang.de.German at 0x207b96b0dd8>

Util.set_lang_class

As name implies, with the help of this function you can set a custom Language class name

that can later be loaded via util.get_lang_class function.

Arguments

The table below explains its arguments:

spaCy

 47

NAME TYPE DESCRIPTION

name unicode It represents the two-letter language code. For example, ‘en’

for English.

cls Language It represents the language class. For example, ‘English’.

Example

An example for util.set_lang_class() function is as follows:

from spacy.lang.en import English

spacy.util.set_lang_class('en', English)

lang_class = spacy.util.get_lang_class('en')

lang_class

Output

The output is stated below:

spacy.lang.en.English

Util.lang_class_is_loaded

It is introduced in version 2.1. This function can be used to find whether a Language class

is already loaded or not. It will return Boolean True or False.

Argument

The table below explains its arguments:

NAME TYPE DESCRIPTION

name unicode It represents the two-letter language code. For example, ‘en’ for

English.

Example 1

An example for util.lang_class_is_loaded() function for English language is given below:

import spacy

spacy.util.lang_class_is_loaded("en")

Output

The output for example 1 is as follows:

True

Example 2

An example for util.lang_class_is_loaded() function for German language is given below:

spaCy

 48

import spacy

spacy.util.lang_class_is_loaded("de")

Output

The output for example 2 is as stated below:

True

Example 3

An example for util.lang_class_is_loaded() function for a language is given below. Here,

you can see that the language code is incorrect.

import spacy

spacy.util.lang_class_is_loaded("fe")

Output

The output for example 3 is as follows:

False

Util.load_model

It is introduced in version 2.0 and is like spacy.load() function. As the name implies, this

utility function will load a model via the following:

 Its shortcut links.

 The name of the installed model package

 A Unicode paths.

 Path-like object.

spaCy will try to resolve the load argument in the below given order:

 If a model is loaded from a shortcut link or package name, spaCy will assume it as

a Python package and call the model’s own load() method.

 On the other hand, if a model is loaded from a path, spacy will assume it is a data

directory and hence initialize the Language class.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

name unicode

/ Path

It is the shortcut link, package name or path of the model

to load.

disable List It represents the names of pipeline components to disable.

spaCy

 49

Example

An example for util.load_model() utility function is stated below:

import spacy

Following is an example of util.load_model utility function by using the shortcut link:

nlp_model = spacy.util.load_model("en")

Following is an example of util.load_model utility function by using the package:

nlp_model = spacy.util.load_model("en_core_web_sm")

Following is an example of util.load_model utility function by using the Unicode path:

nlp_model = spacy.util.load_model ("/path/to/data")

Util.load_model_from_path

It is introduced in version 2.0. As the name suggests, this function will load a model from

a data directory path.

It works by creating the language class and pipeline based on directory’s meta.json. Later

on, it will call from_disk with the specified path. With this utility function, we can also

easily test a new model that is yet to be packaged.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

model_path unicode It is the path to the model the data directory.

disable List It represents the names of pipeline components to disable.

meta Dict It is model meta data. If this value is false, spaCy will try to

load the meta from a meta.json in the same directory.

Example

An example for util.load_model_from_path() function is given below:

import spacy

nlp_model = spacy.util.load_model_from_path ("/path/to/data")

Util.load_model_from_init_py

It is introduced in version 2.0. It is a helper function, which is used in the load() method

of a model package’s _init_.py</>.

spaCy

 50

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

init_file unicode It is the path to model’s _ _init_ _.py.

overrides - It represents specific overrides such as the names of pipeline

components to disable.

Example

An example of util.load_model_from_init_py() helper function is stated below:

import spacy

from spacy.util import load_model_from_init_py

def load(**overrides):

 return load_model_from_init_py(__file__, **overrides)

Util.get_model_meta

It is introduced in version 2.0 and is used to get a model’s meta.json from a directory

path. This function also validate its contents.

Arguments

The table below explains its argument:

NAME TYPE DESCRIPTION

path Unicode/path It is the path to the model directory.

Example

An example of util.get_model_meta() function is stated below:

import spacy

meta_data = spacy.util.get_model_meta("/path/to/model")

Util.update_exc

As the name suggests, this function will update, validate, and overwrite tokenizer

expectations. We can also use it to combine the global exceptions with custom, language-

specific exceptions.

Arguments

The table below explains its arguments:

spaCy

 51

NAME TYPE DESCRIPTION

base_exceptions Dict It represents the base tokenizer exceptions.

addition_dicts Dicts These are the exception dictionaries that should

be added to the base exceptions in order.

Example

An example of util.update_exc() function is as follows:

import spacy

BASE = {"a.": [{ORTH: "a."}], ":)": [{ORTH: ":)"}]}

NEW = {"a.": [{ORTH: "a.", NORM: "all"}]}

exceptions_to_add = spacy.util.update_exc(BASE, NEW)

Util.is_in_jupyter

This utility function is used to check whether, we are running the spacy from a Jupyter

notebook or not. It is done by detecting the IPython kernel. This utility function is mainly

used for the displaCy visualizer.

Example

An example of util.is_in_jupyter() function is as follows:

import spacy

info = "<h1>This is Tutorialspoint.com!</h1>"

if spacy.util.is_in_jupyter():

 from IPython.core.display import display, HTML

 display(HTML(info))

Output

You will see the following output:

This is Tutorialspoint.com!

Util.get_package_path

As the name implies, this utility function is used to get the path of an installed spacy

package. It is mainly used to resolve the location of spacy model packages.

Argument

The table below explains its argument:

spaCy

 52

NAME TYPE DESCRIPTION

package_name Unicode It is the name of the installed package.

Example

An example of util.get_package_path() function is as follows:

import spacy

spacy.util.get_package_path("en_core_web_sm")

Output

When you run the code, you will see the following output:

WindowsPath('C:/Users/Leekha/Anaconda3/lib/site-packages/en_core_web_sm')

Util.is_package

This utility function is mainly used to validate model packages and to check, if the string

maps to an installed package or not.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

name Unicode It is the name of the installed package.

Example 1

An example of util.is_package() function is as follows:

import spacy

spacy.util.is_package("en_core_web_sm")

Output

When you execute the above code, you should see the following output:

True

Example 2

An another example for util.is_package() function is given below:

spacy.util.is_package("English")

Output

When you execute the above code, you should see the following output:

spaCy

 53

False

Util.compile_prefix_regex

This utility function will compile a sequence of prefix rules into a regex object.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

entries tuple This argument represents the prefix rules. For

example,

lang.punctuation.TOKENIZER_PREFIXES</>.

Syntax

prefixes = ("§", "%", "=", r"+")

prefix_reg = spacy.util.compile_prefix_regex(prefixes)

nlp.tokenizer.prefix_search = prefix_reg.search

Example

import spacy

nlp = spacy.load('en_core_web_sm')

prefixes = list(nlp.Defaults.prefixes)

prefixes.remove('\\[')

prefix_regex = spacy.util.compile_prefix_regex(prefixes)

nlp.tokenizer.prefix_search = prefix_regex.search

doc = nlp("[A] works for [B] in [C].")

print([t.text for t in doc])

['[A]', 'works', 'for', '[B]', 'in', '[C]', '.']

Output

['[A', ']', 'works', 'for', '[B', ']', 'in', '[C', ']', '.']

Util.compile_suffix_regex

This utility function will compile a sequence of suffix rules into a regex object.

spaCy

 54

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

entries Tuple This argument represents the suffix rules. For

example,

lang.punctuation.TOKENIZER_SUFFIXES</>.

Syntax

suffixes = ("'s", "'S", r"(?<=[0-9])+")

suffix_reg = util.compile_suffix_regex(suffixes)

nlp.tokenizer.suffix_search = suffix_reg.search

Example

import spacy

nlp = spacy.load('en_core_web_sm')

suffixes = list(nlp.Defaults.suffixes)

suffixes.remove('\\]')

suffix_regex = spacy.util.compile_suffix_regex(suffixes)

nlp.tokenizer.suffix_search = suffix_regex.search

doc = nlp("[A] works for [B] in [C].")

print([t.text for t in doc])

['[A]', 'works', 'for', '[B]', 'in', '[C]', '.']

Output

['[', 'A]', 'works', 'for', '[', 'B]', 'in', '[', 'C]', '.']

Util.compile_infix_regex

This utility function will compile a sequence of infix rules into a regex object.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

entries Tuple This argument represents the infix rules. For

example,

lang.punctuation.TOKENIZER_INFIXES</>.

spaCy

 55

Syntax

infixes = ("…", "-", "—", r"(?<=[0-9])[+-*^](?=[0-9-])")

infix_reg = util.compile_infix_regex(infixes)

nlp.tokenizer.infix_finditer = infix_reg.finditer

Example

import spacy

nlp = spacy.load('en_core_web_sm')

infixes = ('')

infix_reg = spacy.util.compile_infix_regex(infixes)

nlp.tokenizer.infix_finditer = infix_reg.finditer

doc = nlp("[A] works for [B] in [C].")

print([t.text for t in doc])

['[A]', 'works', 'for', '[B]', 'in', '[C]', '.']

Output

['[', 'A', ']', 'w', 'o', 'r', 'k', 's', 'f', 'o', 'r', '[', 'B', ']', 'i',

'n', '[', 'C', ']', '.']

Util.compounding

This utility function will yield an infinite series of compounding values. Whenever the

generator is called, a value is produced by multiplying the previous value by that

compound rate.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

start int/float It represents the first value.

stop Int/float It represents the maximum value.

compound Int/float It is the compounding factor.

Example 1

An example of util.compounding() utility function is as follows:

import spacy

sizes = spacy.util.compounding(5., 50., 5.5)

next(sizes) == 5.

spaCy

 56

Output

The output is given below:

True

Example 2

An another example of util.compounding() function is given below:

next(sizes) == 5. * 5.5

Output

The output is as follows:

True

Example 3

Here is one more example of util.compounding() function. However, here the output is

False.

next(sizes) == 6.5 * 5.5

Output

The output is given below:

False

Util.decaying

This utility function will yield an infinite series of linearly decaying values.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

Start int/float It represents the first value.

Stop Int/float It represents the maximum value.

compound Int/float It is the compounding factor.

Example 1

An example of util.decaying() function is as follows:

import spacy

sizes = spacy.util.decaying(50., 5., 0.001)

next(sizes) == 50.

spaCy

 57

Output

You will receive the following output:

True

Example 2

An another example of util.decaying() function is as follows:

next(sizes) == 50. - 0.001

Output

You will receive the following output:

True

Example 3

Here is one more example of util.decaying() function. However, here the output is False.

next(sizes) == 9.999 - 0.001

Output

You will receive the following output:

False

Util.itershuffle

This utility function was introduced in version 2.0, which will shuffle an iterator. This

function is good for batching and works by holding the bufsize items back and yielding

them sometimes later.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

iterable iterable It represents the iterator to shuffle.

bufsize int This the buffer size for items to hold back. The

default value is 1000.

Example

An example of util.itershuffle() function is as follows:

import spacy

value = range(1000)

spaCy

 58

shuffled_value = spacy.util.itershuffle(values)

shuffled_value

Output

The output is stated below:

<generator object itershuffle at 0x00000207BBBE4A20>

Util.filter_spans

This utility function was introduced in version 2.0. It will filter a sequence of span objects

and also removes the duplicates. This function is very useful for creating the named

entities.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

spans iterable It represents the spans to filter.

Example

An example of util.filter_spans() function is as follows:

import spacy

text = nlp("This is Tutorialspoint.com.")

spans = [text[0:2], text[0:2], text[0:4]]

filtered_document = spacy.util.filter_spans(spans)

filtered_document

Output

You will receive the following output:

[This is Tutorialspoint.com.]

spaCy

 59

As we know that all Python codes are written in an intersection of Python2 and Python3

which may be not that fine in Python. But, that is quite easy in Cython.

The compatibility functions in spaCy along with its description are listed below:

Compatibility

Function

Description

Spacy.compat() Deals with Python or platform compatibility.

compat.is_config() Checks whether a specific configuration of Python version and

operating system (OS) matches the user’s setup.

Spacy.compat()

It is the function that has all the logic dealing with Python or platform compatibility. It is

distinguished from other built-in function by suffixed with an underscore. For example,

unicode_.

Some examples are given in the table below:

NAME PYTHON 2 PYTHON 3

compat.bytes_ str bytes

compat.unicode_ unicode str

compat.basestring_ basestring str

compat.input_ raw_input input

compat.path2str str(path) with .decode('utf8') str(path)

Example

An example of spacy.compat() function is as follows:

import spacy

from spacy.compat import unicode_

compat_unicode = unicode_("This is Tutorialspoint")

compat_unicode

Output

Upon execution, you will receive the following output:

'This is Tutorialspoint'

9. spaCy — Compatibility Functions

spaCy

 60

compat.is_config()

It is the function that checks whether a specific configuration of Python version and

operating system (OS) matches the user’s setup. This function is mostly used for

displaying the targeted error messages.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

python2 Bool Whether spaCy is executed with Python 2.x or not.

python3 Bool Whether spaCy is executed with Python 3.x or not.

windows Bool Whether spaCy is executed on Windows or not.

linux Bool Whether spaCy is executed on Linux or not.

OS X Bool Whether spaCy is executed on OS X or not.

Example

An example of compat.is_config() function is as follows:

import spacy

from spacy.compat import is_config

if is_config(python3=True, windows=True):

 print("Spacy is executing on Python 3 on Windows.")

Output

Upon execution, you will receive the following output:

Spacy is executing on Python 3 on Windows.

spaCy

 61

In this chapter, we will learn about the spaCy’s containers. Let us first understand the

classes which have spaCy’s containers.

Classes

We have four classes which consist of spaCy’s containers:

Doc

Doc, a container for accessing linguistic annotations, is a sequence of token objects. With

the help of Doc class, we can access sentences as well as named entities.

We can also export annotations to numpy arrays and serialize to compressed binary strings

as well. The Doc object holds an array of TokenC structs while, Token and Span objects

can only view this array and can’t hold any data.

Token

As the name suggests, it represents an individual token such as word, punctuation,

whitespace, symbol, etc.

Span

It is a slice from Doc object, which we discussed above.

Lexeme

It may be defined as an entry in the vocabulary. As opposed to a word token, a Lexeme

has no string context. It is a word type hence, it does not have any PoS(Part-of-Speech)

tag, dependency parse or lemma.

Now, let us discuss all four classes in detail:

Doc Class

The arguments, serialization fields, methods used in Doc class are explained below:

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

text unicode This attribute represents the document text in

Unicode.

text_with_ws unicode It is an alias of Doc.text. It is especially provided

for duck-type compatibility with Span and Token.

10. spaCy — Containers

spaCy

 62

mem Pool As name implies, this attribute is for the

document’s local memory heap, for all C data it

owns.

vocab Vocab It stores all the lexical types.

tensor ndarray Introduced in version 2.0, it is a container for

dense vector representations.

cats dict Introduced in version 2.0, this attribute maps a

label to a score for categories applied to the

document. Note that the label is a string, and the

score should be a float value.

user_data - It represents a generic storage area mainly for

user custom data.

lang int Introduced in version 2.1, it is representing the

language of the document’s vocabulary.

lang_ unicode Introduced in version 2.1, it is representing the

language of the document’s vocabulary.

is_tagged bool It is a flag that indicates whether the document

has been part-of-speech tagged or not. It will

return True, if the Doc is empty.

is_parsed bool It is a flag that indicates whether the document

has been syntactically parsed or not. It will

return True, if the Doc is empty.

is_sentenced bool It is a flag that indicates whether the sentence

boundaries have been applied to the document or

not. It will return True, if the Doc is empty.

is_nered bool This attribute was introduced in version 2.1. It is

a flag that indicates whether the named entities

have been set or not. It will return True, if

the Doc is empty. It will also return True, if any of

the tokens has an entity tag set.

sentiment float It will return the document’s positivity/negativity

score (if any available) in float.

user_hooks dict This attribute is a dictionary allowing

customization of the Doc’s properties.

user_token_hooks dict This attribute is a dictionary allowing

customization of properties of Token children.

user_span_hooks dict This attribute is a dictionary allowing

customization of properties of Span children.

_ Underscore It represents the user space for adding custom

attribute extensions.

spaCy

 63

Serialization fields

During serialization process, to restore various aspects of the object, spacy will export

several data fields. We can also exclude data fields from serialization by passing names

via one of the arguments called exclude.

The table below explains the serialization fields:

NAME DESCRIPTION

Text It represents the value of the Doc.text attribute.

Sentiment It represents the value of the Doc.sentiment attribute.

Tensor It represents the value of the Doc.tensor attribute.

user_data It represents the value of the Doc.user_data dictionary.

user_data_keys It represents the keys of the Doc.user_data dictionary.

user_data_values It represents the values of the Doc.user_data dictionary.

Methods

Following are the methods used in Doc class:

Method Description

Doc._ _init_ _ To construct a Doc object.

Doc._

getitem _

To get a token object at a particular position.

Doc._ _iter_ _ To iterate over those token objects from which the annotations can

be easily accessed.

Doc._ _len_ _ To get the number of tokens in the document.

Doc._ _init_ _

This is one of the most useful methods of Doc class. As the name implies, it is used to

construct a Doc object.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

vocab vocab This argument represents a storage container for the lexical

types.

words iterable It represents the list of strings which needs to be added to the

container.

spaCy

 64

spaces iterable It is the list of Boolean values which indicates whether each word

has a subsequent space or not. If you will specify it, you need to

keep its length same as words. The default value will be true.

Example 1

An example of Doc._ _init_ _ method for the construction via nlp object is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

doc

Output

When you run the code, you will see the following output:

This is Tutorialspoint.com.

Example 2

An example of Doc._ _init_ _ method for the construction via DOC class is as follows:

import spacy

from spacy.tokens import Doc

words = ["This is Tutorialspoint.com."]

doc = Doc(nlp_model.vocab, words=words)

doc

Output

When you run the code, you will see the following output:

This is Tutorialspoint.com.

Doc._ _getitem_ _

This method of Doc class is used to get a token object at a particular position say n. Here,

n is an integer. It also supports the negative indexing and follows the usual Python

semantics.

For example, doc[-2] is doc[len(doc) - 2].

Argument

The table below explains its argument:

spaCy

 65

NAME TYPE DESCRIPTION

N integer It represents the index of the token.

We can also get a span object which starts at a position say start and ends at a position

say end. Both these positions are token index.

Example 1

An example of Doc._ _getitem_ _ method is given below:

import spacy

doc = nlp_model("This is Tutorialspoint.com")

doc[0].text

Output

When you run the code, you will see the following output:

'This'

Example 2

Refer the example of Doc._ _getitem_ _ method given below:

doc[-1].text

Output

When you run the code, you will see the following output:

'Tutorialspoint.com'

Example 3

Here is an another example of Doc._ _getitem_ _ method:

span = doc[1:3]

span.text

Output

When you run the code, you will see the following output:

'is Tutorialspoint.com'

Doc._ _iter_ _

This method of Doc class will iterate over those token objects from which the annotations

can be easily accessed.

Example

An example Doc._ _iter_ _ is as follows:

spaCy

 66

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

[t.text for t in doc]

Output

The output is given below:

['This', 'is', 'Tutorialspoint.com']

Doc._ _len_ _

As name implies, this method of Doc class will get the number of tokens in the document.

Example

An example of Doc._ _len_ _is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

len(doc)

Output

The output is as follows:

3

ClassMethods

Following are the classmethods used in Doc class:

Classmethod Description

Doc.set_extension It defines a custom attribute on the Doc.

Doc.get_extension It will look up a previously extension by name.

Doc.has_extension It will check whether an extension has been registered on the

Doc class or not.

Doc.remove_extension It will remove a previously registered extension on the Doc

class.

spaCy

 67

Doc.set_extension

This class method was introduced in version 2.0. It defines a custom attribute on the Doc.

Once done, that attribute will become available via Doc._.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

name Unicode This argument represents the name of the attribute to set by

the extension. For example, ‘his_attr’ will be available as

doc._.his_attr.

default - It is the optional default value of the attribute for the case when

no getter or method is defined.

method callable It is used to set a custom method on the object. For

example, doc._.compare(other_doc).

getter callable This attribute represents the getter function that will takes the

object and will return an attribute value. It is mainly called when

the user accesses the ._ attribute.

setter callable This attribute represents the Setter function that will take

the Doc & a value and will modify the object. It is mainly called

when the user writes to the Doc._ attribute.

Force bool It will forcefully overwrite an existing attribute.

Example

An example of Doc.set_extension classmethod is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Doc

city = lambda doc: any(city in doc.text for city in ("New York", "India",

"USA"))

Doc.set_extension("has_city", getter=city, force = True)

doc = nlp_model("I like India")

doc._.has_city

Output

The output is as follows:

True

spaCy

 68

Doc.get_extension

As the name implies, this class method will look up for a previously extension by name. It

was also introduced in version 2.0 and will return a 4-tuple (default, method, getter,

setter) value.

Example

An example of Doc.get_extension classmethod is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Doc

Doc.set_extension('has_city', default=False, force = True)

extension = Doc.get_extension('has_city')

extension

Output

The output is given below:

(False, None, None, None)

Doc.has_extension

As name implies, this class method will check whether an extension has been registered

on the Doc class or not.

Example

Refer the example for Doc.has_extension classmethod given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Doc

Doc.set_extension('has_city', default=False, force = True)

Doc.has_extension('has_city')

Output

The output is mentioned below:

True

Doc.remove_extension

As the name implies, this class method will remove a previously registered extension on

the Doc class.

spaCy

 69

Example

An example of Doc.remove_extension classmethod is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Doc

Doc.set_extension('has_city', default=False, force = True)

Removed_ext = Doc.remove_extension('has_city')

Doc.has_extension('has_city')

Output

The output is as follows:

False

spaCy

 70

In this chapter, let us learn about the context manager and the properties of Doc Class in

spaCy.

Context Manager

It is a context manager, which is used to handle the retokenization of the Doc class. Let

us now learn about the same in detail.

Doc.retokenize

When you use this context manager, it will first modify the Doc’s tokenization, store it,

and then, make all at once, when the context manager exists.

The advantage of this context manager is that it is more efficient and less error prone.

Example 1

Refer the example for Doc.retokenize context manager given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Doc

doc = nlp_model("This is Tutorialspoint.com.")

with doc.retokenize() as retokenizer:

 retokenizer.merge(doc[0:0])

doc

Output

You will see the following output:

is Tutorialspoint.com.

Example 2

Here is another example of Doc.retokenize context manager:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Doc

doc = nlp_model("This is Tutorialspoint.com.")

with doc.retokenize() as retokenizer:

11. spaCy — Doc Class ContextManager and
Property

spaCy

 71

 retokenizer.merge(doc[0:2])

doc

Output

You will see the following output:

This is Tutorialspoint.com.

Retokenize Methods

Given below is the table, which provides information about the retokenize methods in a

nutshell. The two retokenize methods are explained below the table in detail.

Method Description

Retokenizer.merge It will mark a span for merging.

Retokenizer.split It will mark a token for splitting into the specified orths.

 Retokenizer.merge

This retokenizer method will mark a span for merging.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

Span Span It represents the span to merge.

Attrs dict These are the attributes to set on the merged token.

Example

An example of Retokenizer.merge method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

with doc.retokenize() as retokenizer:

 attrs = {"LEMMA": "Tutorialspoint.com"}

 retokenizer.merge(doc[2:4], attrs=attrs)

doc

Output

You will receive the following output:

spaCy

 72

This is Tutorialspoint.com.

Retokenizer.split

This retokenizer method will mark a token for splitting into the specified orths.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

Token Token It represents the token to split.

Orths List It represents the verbatim text of the split tokens. The condition is

that it must match the text of original token.

Heads List It is the list of tokens or tuples that specifies the tokens to attach

the newly split sub-tokens to.

Attrs Dict These are the attributes to set on all split tokens. It is required that

attribute names must be mapped to the list of per-token attribute

values.

Example

An example of Retokenizer.split method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("I like the Tutorialspoint.com")

with doc.retokenize() as retokenizer:

 heads = [(doc[3], 1), doc[2]]

 attrs = {"POS": ["PROPN", "PROPN"],

 "DEP": ["pobj", "compound"]}

 retokenizer.split(doc[3], ["Tutorials", "point.com"], heads=heads,

attrs=attrs)

doc

Output

You will receive the following output:

I like the Tutorialspoint.com

Properties

The properties of Doc Class in spaCy are explained below:

spaCy

 73

Doc Property Description

Doc.ents Used for the named entities in the document.

Doc.noun_chunks Used to iterate over the base noun phrases in a particular

document.

Doc.sents Used to iterate over the sentences in a particular document.

Doc.has_vector Represents a Boolean value which indicates whether a word vector

is associated with the object or not.

Doc.vector Represents a real-valued meaning.

Doc.vector_norm Represents the L2 norm of the document’s vector representation.

Doc.ents

This doc property is used for the named entities in the document. If the entity recognizer

has been applied, this property will return a tuple of named entity span objects.

Example 1

An example of Doc.ents property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

ents = list(doc.ents)

ents[0].label

Output

When you execute the code, you will see the following output:

383

Example 2

Here is an another example of Doc.ents property:

ents[0].label_

Output

The output is as follows:

‘ORG’

Example 3

Given below is an example of Doc.ents property:

spaCy

 74

ents[0].text

Output

The output is as follows:

'Tutorialspoint.com'

Doc.noun_chunks

This doc property is used to iterate over the base noun phrases in a particular document.

If the document has been syntactically parsed, then this property will yield base noun-

phrase Span objects.

Example 1

An example of Doc.noun_chunks property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com.")

chunks = list(doc.noun_chunks)

chunks[0].text

Output

The output is mentioned below:

'The website'

Example 2

Here is an example of Doc.noun_chunks property:

chunks[1].text

Output

The output is given below:

'Tutorialspoint.com'

Doc.sents

As name suggests, this doc property is used to iterate over the sentences in a particular

document. If the parser is disabled, then the sents iterator will be unavailable.

Example 1

Refer the example of Doc.sents property given below:

spaCy

 75

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com. It is having best technical

tutorials.")

sents = list(doc.sents)

len(sents)

Output

You will get the following output:

2

Example 2

An another example of Doc.sents property is given below:

[a.root.text for a in sents]

Output

The output is given below:

['is', 'having']

Doc.has_vector

As the name suggests, this doc property represents a Boolean value which indicates

whether a word vector is associated with the object or not.

Example

An example of Doc.has_vector is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com.")

doc.has_vector

Output

The output is as follows:

True

Doc.vector

This doc property represents a real-valued meaning. The default value is an average of

the token vectors.

spaCy

 76

Example 1

An example of Doc.vector property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com.")

doc.vector.dtype

Output

The output is as follows:

dtype('float32')

Example 2

An another example of Doc.vector property is as follows:

doc.vector.shape

Output

The output of the code is as follows:

(96,)

Doc.vector_norm

This doc property represents the L2 norm of the document’s vector representation.

Example 1

Refer the example of Doc.vector_norm property given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc1 = nlp_model("The website is Tutorialspoint.com.")

doc2 = nlp_model("It is having best technical tutorials.")

doc1.vector_norm

Output

The output is as follows:

11.126218933074995

Example 2

Given below is an example of Doc.vector_norm property:

spaCy

 77

doc2.vector_norm

Output

The output is as follows:

9.99526963324649

Example 3

Here is another example of Doc.vector_norm property.

doc1.vector_norm != doc2.vector_norm

Output

The output is given below:

True

spaCy

 78

This chapter will help the readers in understanding about the Token Class in spaCy.

Token Class

As discussed previously, Token class represents an individual token such as word,

punctuation, whitespace, symbol, etc.

Attributes

The table below explains its attributes:

NAME TYPE DESCRIPTION

Doc Doc It represents the parent document.

sent Span Introduced in version 2.0.12, represents the sentence

span that this token is a part of.

Text unicode It is Unicode verbatim text content.

text_with_ws unicode It represents the text content, with trailing space

character (if present).

whitespace_ unicode As name implies it is the trailing space character (if

present).

Orth int It is the ID of the Unicode verbatim text content.

orth_ unicode It is the Unicode Verbatim text content which is

identical to Token.text. This text content exists

mostly for consistency with the other attributes.

Vocab Vocab This attribute represents the vocab object of the

parent Doc.

tensor ndarray Introduced in version 2.1.7, represents the token’s

slice of the parent Doc’s tensor.

Head Token It is the syntactic parent of this token.

left_edge Token As name implies it is the leftmost token of this token’s

syntactic descendants.

right_edge Token As name implies it is the rightmost token of this

token’s syntactic descendants.

I Int Integer type attribute representing the index of the

token within the parent document.

ent_type int It is the named entity type.

12. spaCy — Container Token Class

spaCy

 79

ent_type_ unicode It is the named entity type.

ent_iob int It is the IOB code of named entity tag. Here, 3 = the

token begins an entity, 2 = it is outside an entity, 1

= it is inside an entity, and 0 = no entity tag is set.

ent_iob_ unicode It is the IOB code of named entity tag. “B” = the token

begins an entity, “I” = it is inside an entity, “O” = it

is outside an entity, and "" = no entity tag is set.

ent_kb_id int Introduced in version 2.2, represents the knowledge

base ID that refers to the named entity this token is

a part of.

ent_kb_id_ unicode Introduced in version 2.2, represents the knowledge

base ID that refers to the named entity this token is

a part of.

ent_id int It is the ID of the entity the token is an instance of (if

any). This attribute is currently not used, but

potentially for coreference resolution.

ent_id_ unicode It is the ID of the entity the token is an instance of (if

any). This attribute is currently not used, but

potentially for coreference resolution.

Lemma int Lemma is the base form of the token, having no

inflectional suffixes.

lemma_ unicode It is the base form of the token, having no inflectional

suffixes.

Norm int This attribute represents the token’s norm.

norm_ unicode This attribute represents the token’s norm.

Lower int As name implies, it is the lowercase form of the token.

lower_ unicode It is also the lowercase form of the token text which

is equivalent to Token.text.lower().

Shape int To show orthographic features, this attribute is for

transform of the token’s string.

shape_ unicode To show orthographic features, this attribute is for

transform of the token’s string.

Prefix int It is the hash value of a length-N substring from the

start of the token. The defaults value is N=1.

prefix_ unicode It is a length-N substring from the start of the token.

The default value is N=1.

Suffix int It is the hash value of a length-N substring from the

end of the token. The default value is N=3.

suffix_ unicode It is the length-N substring from the end of the token.

The default value is N=3.

spaCy

 80

is_alpha bool This attribute represents whether the token consist of

alphabetic characters or not? It is equivalent

to token.text.isalpha().

is_ascii bool This attribute represents whether the token consist of

ASCII characters or not? It is equivalent to all(ord(c)

< 128 for c in token.text).

is_digit Bool This attribute represents whether the token consist of

digits or not? It is equivalent to token.text.isdigit().

is_lower Bool This attribute represents whether the token is in

lowercase or not? It is equivalent

to token.text.islower().

is_upper Bool This attribute represents whether the token is in

uppercase or not? It is equivalent

to token.text.isupper().

is_title bool This attribute represents whether the token is in

titlecase or not? It is equivalent to token.text.istitle().

is_punct bool This attribute represents whether the token a

punctuation?

is_left_punct bool This attribute represents whether the token a left

punctuation mark, e.g. '(' ?

is_right_punct bool This attribute represents whether the token a right

punctuation mark, e.g. ')' ?

is_space bool This attribute represents whether the token consist of

whitespace characters or not? It is equivalent

to token.text.isspace().

is_bracket bool This attribute represents whether the token is a

bracket or not?

is_quote bool This attribute represents whether the token a

quotation mark or not?

is_currency bool Introduced in version 2.0.8, this attribute represents

whether the token is a currency symbol or not?

like_url bool This attribute represents whether the token resemble

a URL or not?

like_num bool This attribute represents whether the token represent

a number or not?

like_email bool This attribute represents whether the token resemble

an email address or not?

is_oov bool This attribute represents whether the token have a

word vector or not?

spaCy

 81

is_stop bool This attribute represents whether the token is part of

a “stop list” or not?

Pos int It represents the coarse-grained part-of-speech from

the Universal POS tag set.

pos_ unicode It represents the coarse-grained part-of-speech from

the Universal POS tag set.

Tag int It represents the fine-grained part-of-speech.

tag_ unicode It represents the fine-grained part-of-speech.

Dep int This attribute represents the syntactic dependency

relation.

dep_ unicode This attribute represents the syntactic dependency

relation.

Lang Int This attribute represents the language of the parent

document’s vocabulary.

lang_ unicode This attribute represents the language of the parent

document’s vocabulary.

Prob float It is the smoothed log probability estimate of token’s

word type.

Idx int It is the character offset of the token within the parent

document.

Sentiment float It represents a scalar value that indicates the

positivity or negativity of the token.

lex_id int It represents the sequential ID of the token’s lexical

type which is used to index into tables.

Rank int It represents the sequential ID of the token’s lexical

type which is used to index into tables.

Cluster int It is the Brown cluster ID.

_ Underscore It represents the user space for adding custom

attribute extensions.

Methods

Following are the methods used in Token class:

Method Description

Token._ _init_ _ It is used to construct a Token object.

Token.similarity It is used to compute a semantic similarity estimate.

Token.check_flag It is used to check the value of a Boolean flag.

spaCy

 82

Token._ _len_ _ It is used to calculate the number of Unicode characters in the

token.

Token._ _init_ _

This is one of the most useful methods of Token class. As name implies, it is used to

construct a Token object.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

vocab Vocab This argument represents a storage container for the lexical types.

Doc Doc It represents the parent document.

ffset Int An integer type argument that represents the token within the

document.

Example

An example of Token._ _init_ _ method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com.")

token = doc[3]

token.text

Output

You will get the following output:

'Tutorialspoint.com'

Token.similarity

This method is used to compute a semantic similarity estimate. The default is cosine over

vectors.

Argument

The table below explains its argument:

spaCy

 83

NAME TYPE DESCRIPTION

other - It is the object with which the comparison will be done. By default,

it will accept Doc, Span, Token, and Lexeme objects.

Example 1

An example of Token.similarity method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

apples, _, bananas = nlp_model("apples and bananas")

apples_bananas = apples.similarity(bananas)

bananas_apples = bananas.similarity(apples)

apples_bananas

Output

The output is as follows:

0.5698063

Example 2

An another example of Token.similarity method is given below:

bananas_apples

Output

The output is mentioned below:

0.5698063

Token.check_flag

This method is used to check the value of a Boolean flag.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

flag_id Int It represents the attribute ID of the flag which is to be checked.

Example 1

An example of Token.check_flag method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

spaCy

 84

from spacy.attrs import IS_TITLE

doc = nlp_model("This is TutorialsPoint.com.")

token = doc[0]

token.check_flag(IS_TITLE)

Output

The output is mentioned below:

True

Example 2

An another example of Token.check_flag method is given below:

token = doc[1]

token.check_flag(IS_TITLE)

Output

The output is given below:

False

Token._ _len_ _

This method is used to calculate the number of Unicode characters in the token.

Example

An example of Token._ _len_ _ method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is TutorialsPoint.com.")

token = doc[0]

len(token)

Output

The output is as follows:

4

ClassMethods

Following are the classmethods used in Token class:

spaCy

 85

Classmethod Description

Token.set_extension It defines a custom attribute on the Token.

Token.get_extension It will look up a previously extension by name.

Token.has_extension It will check whether an extension has been registered on

the Token class or not.

Token.remove_extension It will remove a previously registered extension on the Token

class.

Token.set_extension

This class method was introduced in version 2.0. It defines a custom attribute on the

Token. Once done, that attribute will become available via Token._.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

name Unicode This argument represents the name of the attribute to set by

the extension. For example, ‘his_attr’ will be available as

doc._.his_attr.

default - It is the optional default value of the attribute for the case when

no getter or method is defined.

method callable It is used to set a custom method on the object. For

example, token._.compare(other_token).

getter callable This attribute represents the getter function that will takes the

object and will return an attribute value. It is mainly called when

the user accesses the ._ attribute.

setter callable This attribute represents the Setter function that will take

the Doc & a value and will modify the object. It is mainly called

when the user writes to the Token._ attribute.

Force bool It will forcefully overwrite an existing attribute.

Example 1

An example of Token.set_extension class method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

fruit_getter = lambda token: token.text in ("apple", "pear", "banana")

Token.set_extension("is_fruit", getter=fruit_getter, force=True)

doc = nlp_model("I have an pear")

spaCy

 86

doc[3]._.is_fruit

Output

The output is given below:

True

Example 2

An another example of Token.set_extension class method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

fruit_getter = lambda token: token.text in ("apple", "pear", "banana")

Token.set_extension("is_fruit", getter=fruit_getter, force=True)

doc = nlp_model("I have a car")

doc[3]._.is_fruit

Output

The output is mentioned below:

False

Token.get_extension

As the name implies, this class method will look up for a previous extension by name. It

was also introduced in version 2.0 and will return a 4-tuple(default, method, getter, setter)

value.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

Name Unicode This argument represents the name of the extension.

Example

An example of Token.get_extension class method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

Token.set_extension("is_fruit", default=False, force=True)

spaCy

 87

extension_to_check = Token.get_extension("is_fruit")

extension_to_check

Output

The output is stated below:

(False, None, None, None)

Token.has_extension

As the name implies, this class method will check whether an extension has been

registered on the Token class or not.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

Name Unicode This argument represents the name of the extension to be

checked.

Example

An example of Token.has_extension class method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

Token.set_extension("is_fruit", default=False, force=True)

Token.has_extension("is_fruit")

Output

The output is mentioned below:

True

Token.remove_extension

As the name implies, this class method will remove a previously registered extension on

the Token class.

Example

An example of Token.remove_extension class method is given below:

import spacy

spaCy

 88

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

Token.set_extension("is_fruit", default=False, force=True)

Removed_ext = Token.remove_extension(“is_fruit”)

Token.has_extension("is_fruit")

Output

The output is given below:

False

spaCy

 89

In this chapter, we will learn about the properties with regards to the Token class in spaCy.

Properties

The token properties are listed below along with their respective descriptions.

Token Property Description

Token.ancestors Used for the rightmost token of this token’s syntactic

descendants.

Token.conjuncts Used to return a tuple of coordinated tokens.

Token.children Used to return a sequence of the token’s immediate syntactic

children.

Token.lefts Used for the leftward immediate children of the word.

Token.rights Used for the rightward immediate children of the word.

Token.n_rights Used for the number of rightward immediate children of the

word.

Token.n_lefts Used for the number of leftward immediate children of the word.

Token.subtree This yields a sequence that contains the token and all the

token’s syntactic descendants.

Token.vector This represents a real-valued meaning.

Token.vector_norm This represents the L2 norm of the token’s vector

representation.

Token.ancestors

This token property is used for the rightmost token of this token’s syntactic descendants.

Example

An example of Token.ancestors property is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

doc = nlp_model("Give it back! He pleaded.")

it_ancestors = doc[1].ancestors

13. spaCy — Token Properties

spaCy

 90

[t.text for t in it_ancestors]

Output

The output is given below:

['Give']

Token.conjuncts

This token property is used to return a tuple of co-ordinated tokens. Here, the token itself

would not be included.

Example

An example of Token.conjuncts property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

doc = nlp_model("I like cars and bikes")

cars_conjuncts = doc[2].conjuncts

[t.text for t in cars_conjuncts]

Output

The output is mentioned below:

['bikes']

Token.children

This token property is used to return a sequence of the token’s immediate syntactic

children.

Example

An example of Token.children property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

doc = nlp_model("This is Tutorialspoint.com.")

give_child = doc[1].children

[t.text for t in give_child]

Output

spaCy

 91

The output is as follows:

['This', 'Tutorialspoint.com', '.']

Token.lefts

This token property is used for the leftward immediate children of the word. It would be

in the syntactic dependency parse.

Example

An example of Token.lefts property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

doc = nlp_model("This is Tutorialspoint.com.")

left_child = [t.text for t in doc[1].lefts]

left_child

Output

You will get the following output:

['This']

Token.rights

This token property is used for the rightward immediate children of the word. It would be

in the syntactic dependency parse.

Example

An example of Token.rights property is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

doc = nlp_model("This is Tutorialspoint.com.")

right_child = [t.text for t in doc[1].rights]

right_child

Output

The output is as follows:

['Tutorialspoint.com', '.']

spaCy

 92

Token.n_rights

This token property is used for the number of rightward immediate children of the word.

It would be in the syntactic dependency parse.

Example

An example of Token.n_rights property is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

doc = nlp_model("This is Tutorialspoint.com.")

doc[1].n_rights

Output

The output is as follows:

2

Token.n_lefts

This token property is used for the number of leftward immediate children of the word. It

would be in the syntactic dependency parse.

Example

An example of Token.n_lefts property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

doc = nlp_model("This is Tutorialspoint.com.")

doc[1].n_lefts

Output

The output is stated below:

1

Token.subtree

This token property yields a sequence that contains the token and all the token’s syntactic

descendants.

Example

spaCy

 93

An example of Token.subtree property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Token

doc = nlp_model("This is Tutorialspoint.com.")

subtree_doc = doc[1].subtree

[t.text for t in subtree_doc]

Output

The output is given below:

['This', 'is', 'Tutorialspoint.com', '.']

Token.vector

This token property represents a real-valued meaning. It will return a one-dimensional

array representing the token’s semantics.

Example 1

An example of Token.vector property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com.")

doc.vector.dtype

Output

The output is stated below:

dtype('float32')

Example 2

An another example of Token.vector property is given below:

doc.vector.shape

Output

The output is stated below:

(96,)

spaCy

 94

Token.vector_norm

This token property represents the L2 norm of the token’s vector representation.

Example

An example of Token.vector_norm property is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc1 = nlp_model("The website is Tutorialspoint.com.")

doc2 = nlp_model("It is having best technical tutorials.")

doc1[2].vector_norm !=doc2[2].vector_norm

Output

The output is given below:

True

spaCy

 95

This chapter will help you in understanding the Span Class in spaCy.

Span Class

It is a slice from Doc object, we discussed above.

Attributes

The table below explains its arguments:

NAME TYPE DESCRIPTION

doc Doc It represents the parent document.

tensor V2.1.7 Ndarray Introduced in version 2.1.7 represents the span’s slice

of the parent Doc’s tensor.

sent Span It is actually the sentence span that this span is a part

of.

start Int This attribute is the token offset for the start of the

span.

end Int This attribute is the token offset for the end of the

span.

start_char Int Integer type attribute representing the character

offset for the start of the span.

end_char Int Integer type attribute representing the character

offset for the end of the span.

text Unicode It is a Unicode that represents the span text.

text_with_ws Unicode It represents the text content of the span with a

trailing whitespace character if the last token has one.

orth Int This attribute is the ID of the verbatim text content.

orth_ Unicode It is the Unicode Verbatim text content, which is

identical to Token.text. This text content exists

mostly for consistency with the other attributes.

label Int This integer attribute is the hash value of the span’s

label.

label_ Unicode It is the label of span.

lemma_ Unicode It is the lemma of span.

14. spaCy — Container Span Class

spaCy

 96

kb_id Int It represents the hash value of the knowledge base ID,

which is referred to by the span.

kb_id_ Unicode It represents the knowledge base ID, which is referred

to by the span.

ent_id Int This attribute represents the hash value of the named

entity the token is an instance of.

ent_id_ Unicode This attribute represents the string ID of the named

entity the token is an instance of.

sentiment Float A float kind scalar value that indicates the positivity or

negativity of the span.

_ Underscore It is representing the user space for adding custom

attribute extension.

Methods

Following are the methods used in Span class:

Methods Description

Span._ _init_ _ To construct a Span object from the slice doc[start : end].

Span._ _getitem_

_

To get a token object at a particular position say n, where n is an

integer.

Span._ _iter_ _ To iterate over those token objects from which the annotations

can be easily accessed.

Span._ _len_ _ To get the number of tokens in span.

Span.similarity To make a semantic similarity estimate.

Span.merge To retokenize the document in a way that the span is merged into

a single token.

Span._ _init_ _

This is one of the most useful methods of Span class. As name implies, it is used to

construct a Span object from the slice doc[start : end].

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

Doc Doc It represents the parent document.

Start Int It is the index of the first token of the span.

End Int It represents the index of the first token after the

span.

spaCy

 97

Example 1

An example of Span._ _init_ _ method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

span = doc[1:4]

span

Output

When you execute the above code, you should see the following output:

is Tutorialspoint.com.

Example 2

An another example of Span._ _init_ _ method is given below:

 [t.text for t in span]

Output

When you execute the above code, you should see the following output:

['is', 'Tutorialspoint.com', '.']

Span._ _getitem_ _

This method of Span class is used to get a token object. at a particular position say n.

Here n is an integer.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

N Integer It represents the index of the token within the span.

Label int / unicode It is the label, which is to attach to the span. For

example, the named entities. As of version 2.1, the

label can be a unicode string also.

kb_id int / unicode It represents a knowledge base ID, which is to attach

to the span. For example, the named entities. This ID

can be an integer as well as a unicode string also.

vector numpy.ndarray[ndim=1,

dtype='float32']

It is a meaning representation of the span.

spaCy

 98

Example

An example of Span._ _getitem_ _ method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

span = doc[1:4]

span[1].text

Output

When you run the code, you will see the following output:

'Tutorialspoint.com'

Span._ _iter_ _

This method of Span class will iterate over those token objects from which the annotations

can be easily accessed.

Example

Refer the example of Span._ _iter_ _ method which is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

span = doc[1:4]

[t.text for t in span]

Output

When you run the code, you will see the following output:

['is', 'Tutorialspoint.com', '.']

Span._ _len_ _

As name implies, this method of Span class will get the number of tokens in span.

Example

An example of Span._ _len_ _ method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

spaCy

 99

span = doc[1:4]

len(span)

Output

When you run the code, you will see the following output:

3

Span.similarity

This method is used to make a semantic similarity estimate. The default is cosine similarity

using an average of word vectors.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

other - It is the object with which the comparison will be done. By default,

it will accept Doc, Span, Token, and Lexeme objects.

Example

An example of Span.similarity method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("red car and black bike")

red_car = doc[:2]

black_bike = doc[3:]

car_bike = red_car.similarity(black_bike)

bike_car = black_bike.similarity(red_car)

car_bike == bike_car

Output

When you run the code, you will see the following output:

True

Span.merge

As the name implies, this method of Span class will retokenize the document in a way that

the span is merged into a single token.

Example

spaCy

 100

An example of Span.merge method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

span = doc[1:4]

doc[2].text

Output

When you run the code, you will see the following output:

'Tutorialspoint.com'

ClassMethods

Following are the classmethods used in Span class:

Classmethod Description

Span.set_extension It defines a custom attribute on the Span.

Span.get_extension To look up a previously extension by name.

Span.has_extension To check whether an extension has been registered on the

Span class or not.

Span.remove_extension To remove a previously registered extension on the Span

class.

Span.set_extension

This class method was introduced in version 2.0. It defines a custom attribute on the Span.

Once done, that attribute will become available via Span._.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

name Unicode This argument represents the name of the attribute to set by

the extension. For example, ‘his_attr’ will be available as

span._.his_attr.

default - It is the optional default value of the attribute for the case when

no getter or method is defined.

method callable It is used to set a custom method on the object. For

example, span._.compare(other_doc).

spaCy

 101

getter callable This attribute represents the getter function that will takes the

object and will return an attribute value. It is mainly called when

the user accesses the ._ attribute.

setter callable This attribute represents the Setter function that will take

the Doc & a value and will modify the object. It is mainly called

when the user writes to the Span._ attribute.

Force bool It will forcefully overwrite an existing attribute.

Example

An example of Span.set_extension class method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Span

city = lambda span: any(city in doc.text for city in ("New York", "India",

"USA"))

Span.set_extension("has_city", getter=city, force = True)

doc = nlp_model("I like India")

doc[0:3]._.has_city

Output

Upon execution, you will receive the following output:

True

Span.get_extension

As the name implies, this class method will look up for a previous extension by name. It

was also introduced in version 2.0 and will return a 4-tuple (default, method, getter,

setter) value.

Example

An example of Span.get_extension class method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Span

Span.set_extension('is_city', default=False, force = True)

extension = Span.get_extension('is_city')

extension

Output

spaCy

 102

Upon execution, you will receive the following output:

(False, None, None, None)

Span.has_extension

As the name implies, this class method will check whether an extension has been

registered on the Span class or not.

Example

An example of Span.has_extension class method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Span

Span.set_extension('is_city', default=False, force = True)

Span.has_extension('is_city')

Output

Upon execution, you will receive the following output:

True

Span.remove_extension

As the name implies, this class method will remove a previously registered extension on

the Span class.

Example

An example of Span.remove_extension class method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

from spacy.tokens import Span

Span.set_extension('is_city', default=False, force = True)

Removed_ext = Span.remove_extension('is_city')

Span.has_extension('is_city')

Output

Upon execution, you will receive the following output:

False

spaCy

 103

In this chapter, let us learn the Span properties in spaCy.

Properties

Following are the properties with regards to Span Class in spaCy.

Span Properties Description

Span.ents Used for the named entities in the span.

Span.as_doc Used to create a new Doc object corresponding to the Span. It

will have a copy of data too.

Span.root To provide the token with the shortest path to the root of the

sentence.

Span.lefts Used for the tokens that are to the left of the span whose heads

are within the span.

Span.rights Used for the tokens that are to the right of the span whose heads

are within the span.

Span.n_rights Used for the tokens that are to the right of the span whose heads

are within the span.

Span.n_lefts Used for the tokens that are to the left of the span whose heads

are within the span.

Span.subtree To yield the tokens that are within the span and the tokens which

descend from them.

Span.vector Represents a real-valued meaning.

Span.vector_norm Represents the L2 norm of the document’s vector representation.

Span.ents

This Span property is used for the named entities in the span. If the entity recogniser has

been applied, this property will return a tuple of named entity span objects.

Example 1

An example of Span.ents property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

span = doc[0:5]

15. spaCy — Span Class Properties

spaCy

 104

ents = list(span.ents)

ents[0].label

Output

You will receive the following output:

383

Example 2

An another example of Span.ents property is as follows:

ents[0].label_

Output

You will receive the following output:

‘ORG’

Example 3

Given below is another example of Span.ents property:

ents[0].text

Output

You will receive the following output:

'Tutorialspoint.com'

Span.as_doc

As the name suggests, this Span property will create a new Doc object corresponding to

the Span. It will have a copy of data too.

Example

An example of Span.as_doc property is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("I like India.")

span = doc[2:4]

doc2 = span.as_doc()

doc2.text

Output

spaCy

 105

You will receive the following output:

India

Span.root

This Span property will provide the token with the shortest path to the root of the sentence.

It will take the first token, if there are multiple tokens which are equally high in the tree.

Example 1

An example of Span.root property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("I like New York in Autumn.")

i, like, new, york, in_, autumn, dot = range(len(doc))

doc[new].head.text

Output

You will receive the following output:

'York'

Example 2

An another example of Span.root property is as follows:

doc[york].head.text

Output

You will receive the following output:

'like'

Example 3

Given below is an example of Span.root property:

new_york = doc[new:york+1]

new_york.root.text

Output

You will receive the following output:

'York'

spaCy

 106

Span.lefts

This Span property is used for the tokens that are to the left of the span, whose heads are

within the span.

Example

An example of Span.lefts property is mentioned below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

lefts = [t.text for t in doc[1:4].lefts]

lefts

Output

You will receive the following output:

['This']

Span.rights

This Span property is used for the tokens that are to the right of the span whose heads

are within the span.

Example

An example of Span.rights property is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

rights = [t.text for t in doc[1:2].rights]

rights

Output

You will receive the following output:

['Tutorialspoint.com', '.']

Span.n_rights

This Span property is used for the tokens that are to the right of the span whose heads

are within the span.

Example

spaCy

 107

An example of Span.n_rights property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

doc[1:2].n_rights

Output

You will receive the following output:

2

Span.n_lefts

This Span property is used for the tokens that are to the left of the span whose heads are

within the span.

Example

An example of Span.n_lefts property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

doc[1:2].n_lefts

Output

You will receive the following output:

1

Span.subtree

This Span property yields the tokens that are within the span and the tokens which

descend from them.

Example

An example of Span.subtree property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("This is Tutorialspoint.com.")

subtree = [t.text for t in doc[:1].subtree]

subtree

spaCy

 108

Output

You will receive the following output:

['This']

Span.vector

This Span property represents a real-valued meaning. The defaults value is an average of

the token vectors.

Example 1

An example of Span.vector property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com.")

doc[1:].vector.dtype

Output

You will receive the following output:

dtype('float32')

Example 2

An another example of Span.vector property is as follows:

doc[1:].vector.shape

Output

You will receive the following output:

(96,)

Span.vector_norm

This doc property represents the L2 norm of the document’s vector representation.

Example

An example of Span.vector_norm property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com.")

spaCy

 109

doc[1:].vector_norm

doc[2:].vector_norm

doc[1:].vector_norm != doc[2:].vector_norm

Output

You will receive the following output:

True

spaCy

 110

In this chapter, Lexeme Class in spaCy is explained in detail.

Lexeme Class

Lexeme class is an entry in the vocabulary. It has no string context. As opposed to a word

token, it is a word type. That’s the reason it has no POS(part-of-speech) tag, dependency

parse or lemma.

Attributes

The table below explains its arguments:

NAME TYPE DESCRIPTION

vocab Vocab It represents the vocabulary of the lexeme.

text unicode A Unicode attribute representing verbatim text content.

orth int It is an integer type attribute that represents ID of the

verbatim text content.

orth_ unicode It is the Unicode Verbatim text content which is identical

to Lexeme.text. This text content exists mostly for

consistency with the other attributes.

rank int It represents the sequential ID of the lexeme’s lexical

type which is used to index into tables.

flags int It represents the container of the lexeme’s binary flags.

norm int This attribute represents the lexeme’s norm.

norm_ unicode This attribute represents the lexeme’s norm.

lower int As name implies, it is the lowercase form of the word.

lower_ unicode It is also the lowercase form of the word.

shape int To show orthographic features, this attribute is for

transform of the word’s string.

shape_ unicode To show orthographic features, this attribute is for

transform of the word’s string.

prefix int It is the hash value of a length-N substring from the start

of the word. The defaults value is N=1.

prefix_ unicode It is a length-N substring from the start of the word. The

default value is N=1.

16. spaCy — Container Lexeme Class

spaCy

 111

suffix int It is the hash value of a length-N substring from the end

of the word. The default value is N=3.

suffix_ unicode It is the length-N substring from the end of the word. The

default value is N=3.

is_alpha bool This attribute represents whether the lexeme consist of

alphabetic characters or not? It is equivalent

to lexeme.text.isalpha().

is_ascii bool This attribute represents whether the lexeme consist of

ASCII characters or not? It is equivalent to all(ord(c) <

128 for c in lexeme.text).

is_digit Bool This attribute represents whether the lexeme consist of

digits or not? It is equivalent to lexeme.text.isdigit().

is_lower Bool This attribute represents whether the lexeme is in

lowercase or not? It is equivalent

to lexeme.text.islower().

is_upper Bool This attribute represents whether the lexeme is in

uppercase or not? It is equivalent

to lexeme.text.isupper().

is_title bool This attribute represents whether the lexeme is in

titlecase or not? It is equivalent to lexeme.text.istitle().

is_punct bool This attribute represents whether the lexeme a

punctuation?

is_left_punct bool This attribute represents whether the lexeme a left

punctuation mark, e.g. '(' ?

is_right_punct bool This attribute represents whether the lexeme a right

punctuation mark, e.g. ')' ?

is_space bool This attribute represents whether the lexeme consist of

whitespace characters or not? It is equivalent

to lexeme.text.isspace().

is_bracket bool This attribute represents whether the lexeme is a bracket

or not?

is_quote bool This attribute represents whether the lexeme a quotation

mark or not?

is_currency bool Introduced in version 2.0.8, this attribute represents

whether the lexeme is a currency symbol or not?

like_url bool This attribute represents whether the lexeme resemble a

URL or not?

like_num bool This attribute represents whether the lexeme represent a

number or not?

spaCy

 112

like_email bool This attribute represents whether the lexeme resemble

an email address or not?

is_oov bool This attribute represents whether the lexeme have a

word vector or not?

is_stop bool This attribute represents whether the lexeme is part of a

“stop list” or not?

Lang Int This attribute represents the language of the parent

document’s vocabulary.

lang_ unicode This attribute represents the language of the parent

document’s vocabulary.

Prob float It is the smoothed log probability estimate of lexeme’s

word type.

cluster int It represents the brown cluster ID.

Sentiment float It represents a scalar value that indicates the positivity

or negativity of the lexeme.

Methods

Following are the methods used in Lexeme class:

Methods Description

Lexeme._ _init_ _ To construct a Lexeme object.

Lexeme.set_flag To change the value of a Boolean flag.

Lexeme.check_flag To check the value of a Boolean flag.

Lexeme.similarity To compute a semantic similarity estimate.

Lexeme._ _init_ _

This is one of the most useful methods of Lexeme class. As name implies, it is used to

construct a Lexeme object.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

Vocab Vocab This argument represents the parent vocabulary.

Orth int It is the orth id of the lexeme.

Example

An example of Lexeme._ _init_ _ method is given below:

spaCy

 113

import spacy

nlp_model = spacy.load("en_core_web_sm")

doc = nlp_model("The website is Tutorialspoint.com.")

lexeme = doc[3]

lexeme.text

Output

When you run the code, you will see the following output:

'Tutorialspoint.com'

Lexeme.set_flag

This method is used to change the value of a Boolean flag.

Arguments

The table below explains its arguments:

NAME TYPE DESCRIPTION

flag_id Int It represents the attribute ID of the flag, which is to be set.

value bool It is the new value of the flag.

Example

An example of Lexeme.set_flag method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

New_FLAG = nlp_model.vocab.add_flag(lambda text: False)

nlp_model.vocab["Tutorialspoint.com"].set_flag(New_FLAG, True)

New_FLAG

Output

When you run the code, you will see the following output:

25

Lexeme.check_flag

This method is used to check the value of a Boolean flag.

Argument

The table below explains its argument:

spaCy

 114

NAME TYPE DESCRIPTION

flag_id Int It represents the attribute ID of the flag which is to be checked.

Example 1

An example of Lexeme.check_flag method is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

library = lambda text: text in ["Website", "Tutorialspoint.com"]

my_library = nlp_model.vocab.add_flag(library)

nlp_model.vocab["Tutorialspoint.com"].check_flag(my_library)

Output

When you run the code, you will see the following output:

True

Example 2

Given below is another example of Lexeme.check_flag method:

nlp_model.vocab["Hello"].check_flag(my_library)

Output

When you run the code, you will see the following output:

False

Lexeme.similarity

This method is used to compute a semantic similarity estimate. The default is cosine over

vectors.

Argument

The table below explains its argument:

NAME TYPE DESCRIPTION

Other - It is the object with which the comparison will be done. By default,

it will accept Doc, Span, Token, and Lexeme objects.

Example

An example of Lexeme.similarity method is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

spaCy

 115

apple = nlp.vocab["apple"]

orange = nlp.vocab["orange"]

apple_orange = apple.similarity(orange)

orange_apple = orange.similarity(apple)

apple_orange == orange_apple

Output

When you run the code, you will see the following output:

True

Properties

Following are the properties of Lexeme Class.

Property Description

Lexeme.vector It will return a 1-dimensional array representing the lexeme’s

semantics.

Lexeme.vector_norm It represents the L2 norm of the lexeme’s vector

representation.

Lexeme.vector

This Lexeme property represents a real-valued meaning. It will return a one-dimensional

array representing the lexeme’s semantics.

Example

An example of Lexeme.vector property is given below:

import spacy

nlp_model = spacy.load("en_core_web_sm")

apple = nlp_model.vocab["apple"]

apple.vector.dtype

Output

You will see the following output:

dtype('float32')

Lexeme.vector_norm

This token property represents the L2 norm of the lexeme’s vector representation.

spaCy

 116

Example

An example of Lexeme.vector_norm property is as follows:

import spacy

nlp_model = spacy.load("en_core_web_sm")

apple = nlp.vocab["apple"]

pasta = nlp.vocab["pasta"]

apple.vector_norm != pasta.vector_norm

Output

You will see the following output:

True

spaCy

 117

In this chapter, let us learn how to train a neural network model in spaCy.

Here, we will understand how we can update spaCy’s statistical models to customize them

for our use case. For Example, to predict a new entity type in online comments. To

customize, we first need to train own model.

Steps for Training

Let us understand the steps for training a neural network model in spaCy.

 Step1: Initialization - If you are not taking pre-trained model, then first, we need

to initialize the model weights randomly with nlp.begin_training.

 Step2: Prediction - Next, we need to predict some examples with the current

weights. It can be done by calling nlp.updates.

 Step3: Compare - Now, the model will check the predictions against true labels.

 Step4: Calculate - After comparing, here, we will decide how to change weights

for better prediction next time.

 Step5: Update - At last make a small change in the current weights and pick the

next batch of examples. Continue calling nlp.updates for every batch of examples

you take.

Let us now understand these steps with the help of below diagram:

Here:

 Training Data: The training data are the examples and their annotations. These

are the examples, which we want to update the model with.

 Text: It represents the input text, which the model should predict a label for. It

should be a sentence, paragraph, or longer document.

17. spaCy — Training Neural Network Model

Training

Data

Text

Label

Label

Gradien

t
Model

Updated

Model

Sav

 Predict

spaCy

 118

 Label: The label is actually, what we want from our model to predict. For example,

it can be a text category.

 Gradient: Gradient is how we should change the weights to reduce the error. It

will be computed after comparing the predicted label with true label.

Training the Entity Recognizer

First, the entity recognizer will take a document and predict the phrases as well as their

labels.

It means the training data needs to include the following:

 Texts.

 The entities they contain.

 The entity labels.

Each token can only be a part of one entity. Hence, the entities cannot be overlapped.

We should also train it on entities and their surrounding context because, entity recognizer

predicts entities in context.

It can be done by showing the model a text and a list of character offsets.

For example, In the code given below, phone is a gadget which starts at character 0 and

ends at character 8.

("Phone is coming", {"entities": [(0, 8, "GADGET")]})

Here, the model should also learn the words other than entities.

Consider another example for training the entity recognizer, which is given below:

("I need a new phone! Any suggestions?", {"entities": []})

The main goal should be to teach our entity recognizer model, to recognize new entities

in similar contexts even if, they were not in the training data.

spaCy’s Training Loop

Some libraries provide us the methods that takes care of model training but, on the other

hand, spaCy provides us full control over the training loop.

Training loop may be defined as a series of steps which is performed to update as well as

to train a model.

Steps for Training Loop

Let us see the steps for training loop, which are as follows:

Step 1: Loop - The first step is to loop, which we usually need to perform several times,

so that the model can learn from it. For example, if you want to train your model for 20

iterations, you need to loop 20 times.

spaCy

 119

Step 2: Shuffle - Second step is to shuffle the training data. We need to shuffle the data

randomly for each iteration. It helps us to prevent the model from getting stuck in a

suboptimal solution.

Step 3: Divide – Later on divide the data into batches. Here, we will divide the training

data into mini batches. It helps in increasing the readability of the gradient estimates.

Step 4: Update - Next step is to update the model for each step. Now, we need to update

the model and start the loop again, until we reach the last iteration.

Step 5: Save- At last, we can save this trained model and use it in spaCy.

Example

Following is an example of spaCy’s Training loop:

DATA = [

 ("How to order the Phone X", {"entities": [(20, 28, "GADGET")]})

]

Step1: Loop for 10 iterations

for i in range(10):

 # Step2: Shuffling the training data

 random.shuffle(DATA)

 # Step3: Creating batches and iterating over them

 for batch in spacy.util.minibatch(DATA):

 # Step4: Splitting the batch in texts and annotations

 texts = [text for text, annotation in batch]

 annotations = [annotation for text, annotation in batch]

 # Step5: Updating the model

 nlp.update(texts, annotations)

Step6: Saving the model

nlp.to_disk(path_to_model)

spaCy

 120

In this chapter, we will learn how to update the neural network model in spaCy.

Reasons to update

Following are the reasons to update an existing model:

 The updated model will provide better results on your specific domain.

 While updating an existing model, you can learn classification schemes for your

problem.

 Updating an existing model is essential for text classification.

 It is especially useful for named entity recognition.

 It is less critical for POS tagging as well as dependency parsing.

Updating an existing model

With the help of spaCy, we can update an existing pre-trained model with more data. For

example, we can update the model to improve its predictions on different texts.

Updating an existing pre-trained model is very useful, if you want to improve the

categories which the model already knows. For example, "person" or "organization". We

can also update an existing pre-trained model for adding new categories.

It is recommended to always update an existing pre-trained model with examples of the

new category as well as examples of the other categories, which the model previously

predicted correctly. If not done, improving the new category might hurt the other

categories.

Setting up a new pipeline

From the below given example, let us understand how we can set up a new pipeline from

scratch for updating an existing model:

 First, we will start with blank English model by using spacy.blank method. It only

has the language data and tokenization rules and does not have any pipeline

component.

 After that we will create a blank entity recognizer and will add it to the pipeline.

Next, we will add the new string labels to the model by using add_label.

 Now, we can initialize the model with random weights by calling

nlp.begin_training.

 Next, we need to randomly shuffle the data on each iteration. It is to get better

accuracy.

18. spaCy — Updating Neural Network Model

spaCy

 121

 Once shuffled, divide the example into batches by using spaCy’s minibatch

function. At last, update the model with texts and annotations and then, continue

to loop.

Examples

Given below is an example for starting with blank English model by using

spacy.blank:

nlp = spacy.blank("en")

Following is an example for creating blank entity recognizer and adding it to the

pipeline:

ner = nlp.create_pipe("ner")

nlp.add_pipe(ner)

Here is an example for adding a new label by using add_label:

ner.add_label("GADGET")

An example for starting the training by using nlp.begin_training is as follows:

nlp.begin_training()

This is an example for training for iterations and shuffling the data on each

iteration.

for itn in range(10):

 random.shuffle(examples)

This is an example for dividing the examples into batches using minibatch utility

function for batch in spacy.util.minibatch(examples, size=2).

 texts = [text for text, annotation in batch]

 annotations = [annotation for text, annotation in batch]

 Given below is an example for updating the model with texts and annotations:

 nlp.update(texts, annotations)

