
WebdriverIO

 i

WebdriverIO

 i

About the Tutorial

WebdriverIO is used to automate any tests designed for a present-day application

developed in React, Angular, Polymerer Vue.js, and so on. This tutorial shall provide you

with a thorough insight on WebdriverIO and its different terminologies. The tutorial

contains practical examples on all important topics.

Audience

This tutorial is designed for professionals working in software testing who want to hone

their skills on a robust automation testing tool like WebdriverIO. It is implemented in

Node.js and comes under the umbrella of Selenium.

Prerequisites

Prior to going through this tutorial, you should have a fair knowledge on JavaScript and

object oriented programming concepts. Besides, a good understanding of basics in

testing is important to proceed with this tutorial.

Copyright & Disclaimer

 Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

WebdriverIO

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. WebdriverIO – Introduction .. 1

2. WebdriverIO — Prerequisite ... 4

3. WebdriverIO — Architecture .. 6

4. WebdriverIO — Getting Started with NodeJS.. 7

5. WebdriverIO — Installation of NPM ... 11

Create NPM Project ... 11

6. WebdriverIO — VS Code Installation .. 13

7. WebdriverIO — Package.json .. 15

8. WebdriverIO — Mocha Installation... 18

9. WebdriverIO — Selenium Standalone Server Installation ... 20

10. WebdriverIO — Configuration File generation .. 22

Create Mocha Spec File ... 24

11. WebdriverIO — VS Code Intellisense .. 28

Add intellisense to VS Code ... 28

12. WebdriverIO — Wdio.conf.js file .. 31

13. WebdriverIO — Xpath Locator .. 35

Xpath Locator with Text .. 38

14. WebdriverIO — CSS Locator .. 41

15. WebdriverIO — Link Text Locator ... 44

Partial Link Text Locator .. 45

16. WebdriverIO — ID Locator .. 48

WebdriverIO

 iii

17. WebdriverIO — Tag Name Locator .. 51

18. WebdriverIO — Class Name Locator ... 53

19. WebdriverIO — Name Locator .. 55

20. WebdriverIO — Expect statement for assertions .. 57

Assertions applied to browsers ... 57

Assertions applied on elements .. 57

Assertions applied to mock objects ... 61

21. WebdriverIO — Happy path flow .. 64

22. WebdriverIO — General Browser Commands ... 66

23. WebdriverIO — Handling Browser Size ... 71

24. WebdriverIO — Browser Navigation Commands .. 73

25. WebdriverIO — Handling Checkboxes and Dropdowns ... 76

Handling Dropdowns ... 78

26. WebdriverIO — Mouse Operations ... 82

27. WebdriverIO — Handling Child Windows/Pop ups ... 84

28. WebdriverIO — Hidden Elements ... 87

29. WebdriverIO — Frames... 89

30. WebdriverIO — Drag and Drop ... 92

31. WebdriverIO — Double Click... 95

32. WebdriverIO — Cookies .. 97

Methods for Cookies ... 97

33. WebdriverIO — Handling Radio Buttons ... 102

34. WebdriverIO — Chai Assertions on webelements ... 105

35. WebdriverIO — Multiple Windows/Tabs .. 111

Methods for Multiple Windows .. 111

36. WebdriverIO — Scrolling Operations .. 114

37. WebdriverIO — Alerts ... 116

Methods for Alerts .. 116

WebdriverIO

 iv

38. WebdriverIO — Debugging Code .. 119

Enable Debugging .. 119

39. WebdriverIO — Capturing Screenshots ... 123

40. WebdriverIO — JavaScript Executor.. 125

Actions with Javascript Executor ... 125

41. WebdriverIO — Waits ... 126

42. WebdriverIO — Running Tests in Parallel.. 129

43. WebdriverIO — Data Driven Testing ... 133

44. WebdriverIO — Running Tests from command-line parameters ... 138

45. WebdriverIO — Execute Tests with Mocha Options .. 143

46. WebdriverIO — Generate HTML reports from Allure .. 146

WebdriverIO

 1

WebdriverIO helps to automate any tests designed for a present-day application

developed in React, Angular, Polymerer Vue.js, and so on. Besides, it can also be used in

Android and iOS platforms.

WebdriverIO is implemented in Node.js and the automation code is written in JavaScript.

It comes under the umbrella of Selenium. All the capabilities of Selenium are also

available in WebdriverIO, along with certain accessory assertions available for

validations.

Now-a-days, the front end of the majority of applications is developed with the

JavaScript frameworks like React, Angular, and so on. WebdriverIO is really useful for

testing these applications.

This is because WebdriverIO coding is also done in JavaScript. This tool falls under the

roof of Selenium and also there are some additional APIs. If we are aware of Selenium,

then gaining knowledge in WebdriverIO is a simple task.

WebdriverIO can also be used for testing normal applications but if we are using

WebdriverIO for verifying any application implemented in React, Angular, Polymerer

Vue.js, and so on, we can enjoy an additional edge in building a robust framework.

If we are creating Selenium tests in JavaScript, then WebdriverIO should be the choice.

There are other tools like Cypress which is based on the JavaScript framework but it

does not fall under the umbrella of Selenium.

If we follow the npm trends for WebdriverIO downloads for the last few years, we shall

observe an upward trend towards the use of WebdriverIO available from the link

mentioned below:

https://www.npmtrends.com/webdriverio

The following screen will appear on your computer:

1. WebdriverIO – Introduction

https://www.npmtrends.com/webdriverio

WebdriverIO

 2

Reports

Some of the reports generated in WebdriverIO are as follows:

 Allure

 Spec

 JUnit

 HTML

 JSON

 Cucumber JSON

Services

Some of the services offered by WebdriverIO are as follows:

 Appium

 Docker

 Selenium Standalone

 ChromeDriver

 Firefox Profile

 DevTools

Testing Frameworks

Some of the testing frameworks supported by WebdriverIO are as follows:

 Cucumber

WebdriverIO

 3

 Jasmine

 Mocha

WebdriverIO

 4

As a prerequisite for WebdriverIO, we need to have an editor to write the JavaScript

code. For this, we can use the Visual Studio Code. We can download it from the below

link:

https://code.visualstudio.com/

Step 1: Based on the local operating system we have for example - macOS, Linux or

Windows, we need to select the link for download.

The following screen will appear on your computer:

Step 2: A zip file gets downloaded after clicking the Download button. Click on this zip

file and the Visual Studio Code application should be available on the machine.

The following screen will appear on your computer:

Step 3: Double-click on Visual Studio Code and it gets launched along with the welcome

page. The following screen will appear on your computer:

2. WebdriverIO — Prerequisite

https://code.visualstudio.com/

WebdriverIO

 5

WebdriverIO

 6

WebdriverIO architecture consists of the following components:

 NodeJS

 WebdriverIO

 JavaScript

 JSON Wire Protocol

 Services

 Browsers

 Application

Nodejs is enabled to execute the JavaScript runtime environment. It is actually an open-

source project. WebdriverIO is developed on Nodejs and JavaScript is the script

implemented by the end-user using the WebdriverIO library.

Thus the JavaScript implemented by the end-user passes a request using the

WebdriverIO via Nodejs to the Services (in the format of an HTTP command). The entire

process is done following the JSON Wire Protocol.

Services send the request to the browsers like Chrome, Firefox, and so on to execute a

test against the application under test. Thus the Services can be termed as a middle-

layer between the browser and the automation framework.

3. WebdriverIO — Architecture

WebdriverIO

 7

WebdriverIO coding is done using JavaScript. For this, NodeJS has to be installed since it

is a JavaScript engine. Only after its installation, we can execute WebdriverIO tests. The

steps to configure NodeJS are listed below:

Step 1: Launch the application using the below link:

https://nodejs.org/en/download/

Step 2: As per the local operating system (Windows, Mac or Linux) we are using, click

on the link to download the Installer. The following screen will appear on your computer:

Step 3: Once the installer is downloaded, click on it. Navigate to the Node.js Installer

welcome screen. Click on Continue. The following screen will appear on your computer:

4. WebdriverIO — Getting Started with NodeJS

https://nodejs.org/en/download/

WebdriverIO

 8

Step 4: Agree to the terms of agreement of Nodejs. The following screen will appear on

your computer:

WebdriverIO

 9

Step 5: Click on Install.

Step 6: Once the success message of Nodejs installation is displayed, click on Close. The

following screen will appear on your computer:

WebdriverIO

 10

Step 7: To check if Nodejs is installed successfully, open the terminal and run the

command:

node

The following screen will appear on your computer:

The version of the Nodejs installed in the machine should be displayed.

WebdriverIO

 11

Once Nodejs has been installed, we have to create a NPM folder. NPM is actually the

package manager for writing tests in JavaScript. The official page for NPM is available in

the below link:

https://www.npmjs.com/search?q=webdriverio

Once we launch this page, enter WebdriverIO in the search box and click on Search, to

get the npm packages for WebdriverIO. The following screen will appear on your

computer:

Create NPM Project

The steps to create a NPM project are listed below:

Step 1: Create an empty folder, say webdriverIO in a location.

Step 2: Open the terminal and move from the current directory to the directory of the

empty folder that we have created.

Step 3: Run the following command:

npm init -y

The y parameter is given to set the default values. The following screen will appear on

your computer:

5. WebdriverIO — Installation of NPM

https://www.npmjs.com/search?q=webdriverio

WebdriverIO

 12

Step 4: The output obtained on running the command in Step 3 says that all the default

configurations have been captured within the package.json file. It is generated within the

folder we have created (named webdriverIO) in Step 1.

The following screen will appear on your computer:

This package.json contains all the dependencies which we need to work with the

WebdriverIO project. To get any package under NPM, we can refer to the link:

https://www.npmjs.com/.

WebdriverIO

 13

In this chapter, let us understand how to install the Visual Studio (VS) Code in

WebdriverIO.

The steps to install the Visual Studio Code are listed below:

Step 1: Navigate to the below link:

https://code.visualstudio.com/

Step 2: Depending on the local operating system we have for example - macOS, Linux

or Windows, we need to choose the link for download.

The following screen will appear on your computer:

Step 3: A zip file gets downloaded after clicking the Download button. After downloading

this file has completed, click on it and the Visual Studio Code application should become

available for use.

The following screen will appear on your computer:

6. WebdriverIO — VS Code Installation

https://code.visualstudio.com/

WebdriverIO

 14

Step 4: Double-click it and the Visual Studio Code application should launch along with

the welcome page.

The following screen will appear on your computer:

Step 5: Click on the Open folder link and import the folder that contains the

package.json file. The details of how the package.json file got created are discussed in

detail in the Chapter titled Installation of NPM.

The following screen will appear on your computer:

WebdriverIO

 15

Once the package.json file gets generated, we need to install other npm packages for

WebdriverIO. The details of how the package.json file got created are discussed in detail

in the Chapter titled Installation of NPM.

The necessary packages for WebdriverIO in the NPM registry can be found in the below

link:

https://www.npmjs.com/package/webdriverio

The following screen will appear on your computer:

For installation of WebdriverIO, we have to run the below command from the terminal:

 npm i webdriverio

or

npm install webdriverio.

The following screen will appear on your computer:

7. WebdriverIO — Package.json

https://www.npmjs.com/package/webdriverio

WebdriverIO

 16

After the command gets executed successfully, the package.json now displays the

WebdriverIO version installed.

We can verify if the WebdriverIO has installed successfully, if the folder node_modules

created within the project contains the webdriverio folder.

The following screen will appear on your computer:

WebdriverIO

 17

WebdriverIO

 18

Mocha is a testing framework based on JavaScript which is built on Nodejs. It makes

asynchronous test execution flow interesting and simple. Mocha tests can be run serially.

It is capable of producing accurate and customizable reports. Also, the uncaught

exceptions can be easily tagged with the proper test cases. The details of Mocha can be

found in the below link:

https://www.tutorialspoint.com/tesults/tesults_integrating_your_automated_tests.htm

To install Mocha packages in the NPM registry, the command is as follows:

npm install mocha

The following screen will appear on your computer:

8. WebdriverIO — Mocha Installation

https://www.tutorialspoint.com/tesults/tesults_integrating_your_automated_tests.htm

WebdriverIO

 19

After the command has been executed successfully, the Mocha version installed gets

reflected within the package.json file.

WebdriverIO

 20

WebdriverIO works under the roof of Selenium. To establish communication with the

browser, we are required to install the Selenium standalone server.

To install Selenium standalone server, we have to run the following command:

npm install selenium-standalone

Or,

npm i selenium-standalone.

The following screen will appear on your computer:

9. WebdriverIO — Selenium Standalone Server
Installation

WebdriverIO

 21

After the command has been executed successfully, the Selenium standalone server

package version installed gets reflected within the package.json file.

WebdriverIO

 22

WebdriverIO tests are controlled from a Configuration file. It is often considered the

heart of WebdriverIO. It contains details on what test cases to be executed, browser on

which the tests should run, global information - timeout, reports, screenshots and so on.

In WebdriverIO we do not execute a single test. We are required to trigger the

Configuration file with the help of the Test Runner. Test Runner scans the information

provided in the Configuration file and then triggers the tests accordingly.

To get the Test Runner, we have to install the WebdriverIO CLI dependencies. To install

this and save it in the package.json file, we have to run the below mentioned command:

npm i --save-dev @wdio/cli

After this command has been executed successfully, the version of CLI dependency shall

be reflected within the package.json file. The following screen will appear on your

computer:

10. WebdriverIO — Configuration File generation

WebdriverIO

 23

To create a Configuration file, we have to run the below mentioned command:

 npx wdio config -y

After this command has been executed successfully, the configuration file called the

wdio.conf.js gets created within our project. Also, the package.json file should now

contain some more dependencies under the devDependencies field.

The following screen will appear on your computer:

WebdriverIO

 24

Apart from the dependencies marked in the above image, we have to add one more

dependency so that the WebdriverIO commands can execute synchronously.

We have to add the dependency - "@wdio/sync": "<version number>" under the

devDependencies field. Then run the following command:

npm install

To run a Configuration file from the test runner, we have to run the below given

command:

npx wdio run wdio.conf.js

Create Mocha Spec File

After a Configuration file is created, we shall find a test folder generated within the

WebdriverIO project. The details on how to create a Configuration file are described in

the Chapter titledConfiguration File generation.

The following screen will appear on your computer:

WebdriverIO

 25

If we expand this folder, we shall find two sub-folders - pageobjects and specs

containing JavaScript files created by default. These are basically sample tests provided

to guide the first time users to get accustomed with the Mocha framework.

Mocha is a testing framework based on JavaScript which is built on Nodejs. It makes

asynchronous test execution flow interesting and simple. Mocha tests can be run serially.

It is capable of producing accurate and customizable reports. Also, the uncaught

exceptions can be easily tagged with the proper test cases. The details of Mocha can be

found in the below link:

https://www.tutorialspoint.com/tesults/tesults_integrating_your_automated_tests.htm

As per the Mocha testing framework, all the test files are known as the spec files and

they should reside within the specs folder.

Blocks in Test File

A test file should have the following blocks:

https://www.tutorialspoint.com/tesults/tesults_integrating_your_automated_tests.htm

WebdriverIO

 26

 describe: This is higher in hierarchy than the it block. A test file can have

multiple describe blocks. A describe block represents a test suite. It has two

arguments - description of the test suite and an anonymous function.

 it: This is lower in hierarchy than the describe block. A describe can have multiple

it blocks. An it block represents a test case and should be mandatory within a

describe block It has two arguments - description of the test case and an

anonymous function. The actual WebdriverIO code is implemented within the it

block.Steps to Create Mocha File

To create a Mocha file, let us follow the below steps:

Step 1: Right-click on the specs folder (which is within the test folder), then select New

File. The following screen will appear on your computer:

Step 2: Enter a filename, say testcase1.js.

The following screen will appear on your computer:

WebdriverIO

 27

Step 3: Add the below code in this file:

// test suite name

 describe('Tutorialspoint Application', function () {

// test case name

 it('Get Page Title', function (){

 // URL launching

 browser.url("https://www.tutorialspoint.com/about/about_careers.htm")

 //print page title in console

 console.log(browser.getTitle())

 });

 });

In the above code, the browser is the global object exposed by the WebdriverIO.

Please note: We cannot run this individual file directly. We shall take the help of the

Configuration file in order to execute it.

WebdriverIO

 28

Once we have completed installation of the Visual Studio Code, we should add the

intellisense in the editor so that once we begin writing the WebdriverIO commands, the

auto-suggestions of the WebdriverIO methods are displayed.

The details on how to do a VS Code installation are discussed in detail in the Chapter

titled VS Code Installation.

This is a very important feature that should be added so that the end-users do not need

to memorize the raw code for the WebdriverIO.

Add intellisense to VS Code

The steps to add intellisense to the VS Code for the WebdriverIO are listed below:

Step 1: Click on the New File button appearing to the right of the WebdriverIO project.

The following screen will appear on your computer:

Step 2: Enter the file name as jsconfig.json. Here, we have to specify the path of the

spec files where we are implementing our test.

If we want to apply intellisense feature to all the spec files within the test folder, we can

specify the relative path as test/spec/*.js.

The following screen will appear on your computer:

11. WebdriverIO — VS Code Intellisense

WebdriverIO

 29

Step 3: Add the below code inside the file.

{

 "include": [

 //relative path of all spec files

 "test/specs/*.js",

 "**/*.json",

 "node_modules/@wdio/sync",

 "node_modules/@wdio/mocha-framework"

]

}

Step 4: In the spec file, start writing a WebdriverIO object or a method and we shall

obtain the entire auto - suggestions.

The following screen will appear on your computer:

WebdriverIO

 30

WebdriverIO

 31

WebdriverIO tests are controlled from the Configuration file. It is often considered the

heart of WebdriverIO. It contains details on which spec files to be executed, browser on

which the tests should run, global information - base URL, timeout, reports, screenshots

and so on.

In WebdriverIO we do not execute a single test. We are required to trigger the

Configuration file with the help of the Test Runner. Test Runner scans the information

provided in the Configuration file and then triggers the tests accordingly.

To create a Configuration file, we have to run the below command:

 npx wdio config -y

After this command has been executed successfully, the Configuration file called the

wdio.conf.js gets created within our project.

The following screen will appear on your computer:

Within this file, we have to specify the path of the spec file that we want to execute

within the specs parameter.

By default, the path provided is: ./test/specs/**/*.js. This means any .js file under

the sub-folder specs (which is under the folder test) should be picked for execution.

The following screen will appear on your computer:

12. WebdriverIO — Wdio.conf.js file

WebdriverIO

 32

To execute the test with the help of the wdio.conf.js file, we have to run the command:

npx wdio run wdio.conf.js

The following screen will appear on your computer:

After the command has been executed successfully, the page title of the application

launched is obtained in the console.

However, a lot of the logs got captured in the console. This is because the parameter

logLevel is set to info by default in the wdio.conf.js file.

The following screen will appear on your computer:

WebdriverIO

 33

In order to get rid of some of the logs and to obtain only those which the test case

directs, we can set this parameter to silent.

The following screen will appear on your computer:

Again run the Configuration file with the following command:

npx wdio run wdio.conf.js

The following screen will appear on your computer:

WebdriverIO

 34

After the command has been executed successfully, we find lesser logs and the page title

of the application launched - About Careers at Tutorials Point - Tutorialspoint is obtained

in the console.

WebdriverIO

 35

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. We can create an xpath for an element

for its identification. The rules to create a xpath expression are discussed below:

The syntax of xpath is

//tagname[@attribute='value']

Here, the tagname is optional.

For example,

 //img[@alt='tutorialspoint']

Let us see the html code of the highlighted link - Home. The following screen will appear

on your computer:

The xpath for element Home shall be as follows:

//a[@title='TutorialsPoint - Home'].

13. WebdriverIO — Xpath Locator

WebdriverIO

 36

The following screen will appear on your computer:

In the WebdriverIO code, we can specify the xpath expression of an element in the

below format:

$('value of the xpath expression')

Or, we can store this expression in a variable:

const p = $('value of the xpath expression')

Let us identify the text highlighted in the below image and obtain its text:

The xpath of the above highlighted element should be as follows:

//li[@class='heading']

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

WebdriverIO

 37

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with Xpath', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with xpath then obtain text

 console.log($("//li[@class='heading']").getText() + " - is the

text.")

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js.

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation

The following screen will appear on your computer:

WebdriverIO

 38

After the command has been executed successfully, the text of the element - About

Tutorialspoint is printed in the console.

Xpath Locator with Text

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

We can create an xpath for an element for its identification. However, there are

scenarios where there are no HTML attributes or tagname available to uniquely identify

an element.

In such a situation, we can create an xpath for an element with the help of the text

visible on the page by using the text function. The text function is case-sensitive.

The rule to create a xpath expression with visible text is discussed below:

The syntax of xpath is as follows:

//tagname[text()='displayed text'].

For example,

//li[text()='WebdriverIO']

Let us identify the element highlighted in the below image with the help of the visible

text in xpath:

WebdriverIO

 39

The xpath of the above highlighted element using the text() function shall be as follows:

//li[text()='About Tutorialspoint']

To begin, follow Steps 1 to 5 from the Chapter - Happy path flow with WebdriverIO

which are as follows:
Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with Xpath - text()', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with xpath - visible text then obtain text

 console.log($("//li[text()='About Tutorialspoint']").getText() + " - is

the text.")

 });

WebdriverIO

 40

});

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js.

The details on how to create a Configuration file are discussed in detail in the Chapter

titledWdio.conf.js file and Chapter titled Configuration File generation

The following screen will appear on your computer:

After the command has been executed successfully, the text of the element - About

Tutorialspoint is printed in the console.

WebdriverIO

 41

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. We can create a css for an element for

its identification. The rules to create a css expression are discussed below:

The syntax of css is as follows:

tagname[attribute='value']

Here, the tagname is optional. We can also specifically use the id and class attribute to

create a css expression.

With id, the format of a css expression should be tagname#id. For example, input#txt

[here input is the tagname and the txt is the value of the id attribute].

With class, the format of the css expression should be tagname.class.

For example,

input.cls-txt

Here, input is the tagname and the cls-txt is the value of the class attribute.

In the WebdriverIO code, we can specify the css expression of an element in the below

format:

$('value of the css expression')

Or, we can store this expression in a variable as follows:

const p = $('value of the css expression')

Let us identify the text highlighted in the below image and obtain its text:

14. WebdriverIO — CSS Locator

WebdriverIO

 42

The css of the above highlighted element should be li.heading.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:
Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with CSS', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with CSS then obtain text

 console.log($("li.heading").getText() + " - is the text.")

 });

WebdriverIO

 43

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titledWdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the text of the element - About

Tutorialspoint is printed in the console.

WebdriverIO

 44

Once we navigate to a webpage, we may interact with a webelement by clicking a link to

complete our automation test case. The locator link text is used for an element having

the anchor tag.

We can identify an anchor element with a matching text. In the WebdriverIO code, we

have the option to specify the link of an element in the below format:

$('=value of the anchor text')

Or, we can store this expression in a variable as follows:

const p = $('=value of the anchor text')

Let us identify the link highlighted in the below image and click on it:

The link highlighted in the above image has a tagname - a and the anchor text - Terms

of Use.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:
Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

15. WebdriverIO — Link Text Locator

WebdriverIO

 45

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with Link Text', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with link text then click

 $("=Terms of Use").click()

 console.log('Page title after click: ' + browser.getTitle())

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js.

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the title of the page after clicking -

Terms of Use - Tutorialspoint is printed in the console.

Partial Link Text Locator

Once we navigate to a webpage, we may interact with a webelement by clicking a link to

complete our automation test case. The locator partial link text is used for an element

having the anchor tag.

WebdriverIO

 46

We can identify an anchor element with a matching text. In the WebdriverIO code, we

have the option to specify the partial link of an element in the below format:

$('*=value of the anchor text which is matching')

Or, we can store this expression in a variable as follows:

const p = $('*=value of the anchor text which is matching')

The partial link text is similar to link text with the only difference being that it assists in

scenarios where a few characters of an anchor element are fixed and the remaining ones

are dynamic.

Let us identify the link highlighted in the below image and click on it:

The link highlighted in the above image has a tagname - a and the anchor text - Terms

of Use.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:
Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with Partial Link Text', function(){

WebdriverIO

 47

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with partial link text then click

 $("*=Terms of").click()

 console.log('Page title after click: ' + browser.getTitle())

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the title of the page after clicking -

Terms of Use - Tutorialspoint is printed in the console.

WebdriverIO

 48

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. We can use the id attribute for an

element for its identification. It is a very useful locator and speeds up the execution of

automation tests in comparison to all the locators.

In the WebdriverIO code, we have the option to specify the value of the id attribute of an

element in the below format:

$('=#value of id attribute')

Or, we can store this expression in a variable as follows:

const p = $('=#value of id attribute')

Let us identify the element highlighted in the below image and click on it:

16. WebdriverIO — ID Locator

WebdriverIO

 49

The link highlighted in the above image has a tagname - a and the id attribute value -

redirect.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:
Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

WebdriverIO

 50

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with Id', function(){

 // launch url

 browser.url('https://the-internet.herokuapp.com/redirector')

 //identify element with id then click

 $("#redirect").click()

 //obtain page title

 console.log('Page title after click: ' + browser.getTitle())

 });

});

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the title of the page after clicking -

The Internet is printed in the console.

WebdriverIO

 51

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. We can use the HTML tagname for an

element for its identification. In the WebdriverIO code, we have the option to specify the

tagname of an element in the below format:

$('<element tagname>')

Or, we can store this expression in a variable as follows:

const p = $('element tagname')

Let us identify the element highlighted in the below image and obtain its text:

The element highlighted in the above image has a tagname - h1.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:
Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

17. WebdriverIO — Tag Name Locator

WebdriverIO

 52

 it('Identify element with Tagname', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with tagname then obtain text

 console.log($("<h1>").getText() + " - is the text.")

 });

});

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the text of the element - About

Careers at Tutorials Point is printed in the console.

WebdriverIO

 53

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. We can use the class name attribute for

an element for its identification. It is a very useful locator and speeds up the execution

of automation tests in comparison to xpath.

In the WebdriverIO code, we have the option to specify the value of the class name

attribute of an element in the below format:

$('=.value of class attribute')

Or, we can store this expression in a variable as follows:

const p = $('=.value of class attribute')

Let us identify the text highlighted in the below image and obtain its text:

The element highlighted in the above image has the class attribute value as heading.

The Code Implementation is as follows:

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with Class Name', function(){

18. WebdriverIO — Class Name Locator

WebdriverIO

 54

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with Class Name then obtain text

 console.log($(".heading").getText() + " - is the text.")

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation. The following

screen will appear on your computer:

After the command has been executed successfully, the text of the element - About

Tutorialspoint is printed in the console.

WebdriverIO

 55

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. We can use the name attribute for an

element for its identification. This locator is deprecated now and is only compatible with

old browsers that are based on JSONWireProtocol or Appium.

In the WebdriverIO code, we have the option to specify the value of the name attribute

of an element in the below format:

$('[name attribute=''value'']')

Or, we can store this expression in a variable as follows:

const p = $('[name attribute=''value'']')

Let us identify the edit box highlighted in the below image and enter text:

The element highlighted in the above image has the name attribute value as search.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:
Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

19. WebdriverIO — Name Locator

WebdriverIO

 56

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with Name', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/index.htm')

 //identify element with Name then input text

 $('[name="search"]').setValue('Selenium')

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

WebdriverIO

 57

To use WebdriverIO as an automation testing tool, we need to have checkpoints which

will help us to conclude if our test has passed or failed. There are various assertions

available in WebdriverIO with which we can verify if the test has successfully validated a

step.

In assertion, we can compare an expected result of a test with an actual. If both are

similar, a test should pass, else it should fail. The expect statement in WebdriverIO can

be applied on the browser, a mock object, or an element.

We have to add a NodeJS library called Chai. Chai library contains the expect statement

that is used for the Assertion.

We have to add the below statement in our code to implement the Chai Assertion:

const e = require('chai').expect

Assertions applied to browsers

These assertions are listed below:

toHaveUrl

It checks whether the browser has opened a particular page.The syntax is as follows:

expect(browser).toHaveUrl('https://www.tutorialspoint.com/index.htm')

toHaveUrlContaining

It checks whether the URL of a page has a particular value.

The syntax is as follows:

expect(browser).toHaveUrlContaining('tutorialspoint')

toHaveUrl

It checks whether the page has a particular title.

The syntax is as follows:

expect(browser).toHaveTitle('Terms of Use - Tutorialspoint')

Assertions applied on elements

These assertions are listed below:

toBeDisplayed

It checks whether an element is displayed.

20. WebdriverIO — Expect statement for
assertions

WebdriverIO

 58

The syntax is as follows:

const e = $('#loc')

expect(e).toBeDisplayed()

toExist

It checks whether an element exists.

The syntax is as follows:

const e = $('#loc')

expect(e).toExist()

toBePresent

It checks whether an element is present.

The syntax is as follows:

const e = $('#loc')

expect(e).toBePresent()

toBeExisting

It is similar to toExist.

toBeFocussed

It checks whether an element is focused or not.

The syntax is as follows:

const e = $('#loc')

expect(e).toBeFocussed()

toHaveAttribute

It checks whether an element attribute has a particular value.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveAttribute('name', 'search')

toHaveAttr

It is similar to toExist.

toHaveAttributeContaining

It checks whether an element attribute contains a particular value.

The syntax is as follows:

WebdriverIO

 59

const e = $('#loc')

expect(e).toHaveAttributeContaining('name', 'srch')

toHaveElementClass

It checks whether an element has a particular class name.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveElementClass('name', { message: 'Not available!', })

toHaveElementClassContaining

It checks whether an element class name contains a particular value.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveElementClassContaining('nam')

toHaveElementProperty

It checks whether an element has a particular property.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveElementProperty('width', 15)

//verify negative scenario

expect(e).not.toHaveElementProperty('width', 20)

toHaveValue

It checks whether an input element has a particular value.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveValue('Selenium', { ignoreCase: false})

toHaveValueContaining

It checks whether an input element contains a particular value

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveValueContaining('srch')

toBeClickable

It checks whether an element is clickable.

WebdriverIO

 60

The syntax is as follows:

const e = $('#loc')

expect(e).toBeClickable()

toBeDisabled

It checks whether an element is disabled.

The syntax is as follows:

const e = $('#loc')

expect(e).toBeDisabled()

//verify negative scenario

expect(e).not.toBeEnabled()

toBeEnabled

It checks whether an element is enabled.

The syntax is as follows:

const e = $('#loc')

expect(e).toBeEnabled()

toBeSelected

It is the same as toBeEnabled.

toBeChecked

It is the same as toBeEnabled.

toHaveHref

It checks whether a link element has a particular link target.

The syntax is as follows:

const e = $('<a>')

expect(e).toHaveHref('https://www.tutorialspoint.com/index.htm')

toHaveLink

It is same as toHaveHref.

toHaveHrefContaining

It checks whether a link element contains a particular link target.

The syntax is as follows:

const e = $('<a>')

expect(e).toHaveHrefContaining('tutorialspoint.com')

WebdriverIO

 61

toHaveLinkContaining

It is the same as HaveHrefContaining.

toHaveId

It checks whether an element has a particular id attribute value.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveId('loc')

toHaveText

It checks whether an element has a particular text.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveText('Learning WebdriverIO')

toHaveTextContaining

It checks whether an element contains a particular text.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveTextContaining('Learning WebdriverIO')

toBeDisplayedInViewpoint

It checks whether an element is within the viewpoint.

The syntax is as follows:

const e = $('#loc')

expect(e).toBeDisplayedInViewpoint()

Assertions applied to mock objects

The assertions are listed below:

toBeRequested

It checks whether a mock was called.

The syntax is as follows:

const m = browser.mock('**/api/list*')

expect(m).toBeRequested()

toBeRequestedTimes

WebdriverIO

 62

It checks whether a mock was called for an expected number of times.

The syntax is as follows:

const m = browser.mock('**/api/list*')

expect(m).toBeRequestedTimes(2)

To begin, follow the steps 1 to 5 from the Chapter titled Happy path flow with

webdriverIO which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Assertion with expect', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with link text then click

 $("=Terms of Use").click()

 browser.pause(1000)

 //verify page title with assertion

 expect(browser).toHaveTitleContaining('Terms of Use - Tuter')

 });

});

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

WebdriverIO

 63

After the command has been executed successfully, we find the result as 1 failed. Since

the Expected: is Terms of Use - Tuter and the Received: output is Terms of Use -

Tutorialspoint.

Also, the WebdriverIO expect statement has highlighted the part of the text where the

Expected: and the Received: texts are not matching.

WebdriverIO

 64

Let us create a simple happy flow to demonstrate how to create a basic WebdriverIO

test:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Happy Flow', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with link text then click

 $("=Team").click()

 //verify URL of next page with assertion

 expect(browser).toHaveUrlContaining('team')

 });

});

Step 7: Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

21. WebdriverIO — Happy path flow

WebdriverIO

 65

Step 8: On investigating further on the output, we shall see the test within the spec file

testcase1.js is marked as PASSED.

The browser version and operating system on which the test has been executed, session

id, name of the spec file, test suite name - Tutorialspoint Application, test case name -

Happy Flow, duration of test execution, and so on, have also been captured in the

console.

WebdriverIO

 66

Some of the general browser commands used in WebdriverIO are listed below:

browser.url(URL)

This command is used to launch an application whose URL is passed as a parameter.

The syntax is as follows:

 browser.url('https://the-internet.herokuapp.com/redirector')

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with webdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Identify element with Id', function(){

 // launch url

 browser.url('https://the-internet.herokuapp.com/redirector')

 //identify element with id then click

 $("#redirect").click()

 //obtain page title

 console.log('Page title after click: ' + browser.getTitle())

 });

});

browser.getTitle()

22. WebdriverIO — General Browser Commands

WebdriverIO

 67

This command is used to get the title of a page presently launched in the browser. The

value is returned in the form of a string. This command does not accept any parameters.

If the page has no title, a null string is returned.

The syntax is as follows:

browser.getTitle()

To begin, follow Steps 1 to 5 from the Chapter titledHappy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

 describe('Tutorialspoint Application', function () {

// test case name

 it('Get Page Title', function (){

 // URL launching

 browser.url("https://www.tutorialspoint.com/about/about_careers.htm")

 //print page title in console

 console.log(browser.getTitle())

 });

 });

browser.getUrl()

This command is used to get the URL of a page presently launched in the browser. The

value is returned in the form of a string. This command does not accept any parameters.

The syntax is as follows:

browser.getUrl()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

WebdriverIO

 68

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

 describe('Tutorialspoint Application', function () {

// test case name

 it('Get Url', function (){

 // URL launching

 browser.url("https://www.tutorialspoint.com/index.htm")

 //print URL in console

 console.log(browser.getUrl())

 });

 });

browser.getPageSource()

This command is used to get the page source of a page presently launched in the

browser. The value is returned in the form of a string. This command does not accept

any parameters.

The syntax is as follows:

browser.getPageSource()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

WebdriverIO

 69

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

 describe('Tutorialspoint Application', function () {

// test case name

 it('Get Page Source', function (){

 // URL launching

 browser.url("https://www.tutorialspoint.com/index.htm")

 //print URL in console

 console.log(browser.getPageSource())

 });

 });

browser.maximizeWindow()

This command is used to maximise the present browser window.

The syntax is as follows:

browser.maximizeWindow()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

 describe('Tutorialspoint Application', function () {

// test case name

 it('Maximise Browser', function (){

 // URL launching

WebdriverIO

 70

 browser.url("https://www.tutorialspoint.com/questions/index.php")

 //maximize browser

 browser.maximizeWindow()

 });

 });

WebdriverIO

 71

While working on automation tests in WebdriverIO, we may be required to set the size of

the window and obtain the size of the window. The window size refers to the window

height and width.

browser.setWindowSize(250, 450)

This command is used to set the window size. Here, the window size shall be set to width

- 250 and height - 450.

The syntax is as follows:

browser.setWindowSize(250, 450)

browser.getWindowSize()

This command is used to get the window dimension.

The syntax is as follows:

browser.getWindowSize()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Dimension', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/index.htm')

 //set window size

23. WebdriverIO — Handling Browser Size

WebdriverIO

 72

 browser.setWindowSize(500, 450)

 //get window size

 console.log(browser.getWindowSize())

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the dimension of the browser

window- {width: 500, height: 450} is printed in the console.

WebdriverIO

 73

Some of the browser navigation commands used in WebdriverIO are listed below:

browser.navigateTo(URL)

This command is used to navigate to an application whose URL is passed as a

parameter.

The syntax is as follows:

browser.navigateTo('https://the-internet.herokuapp.com/redirector')

browser.back()

This command is used to navigate back in browser history.

The syntax is as follows:

browser.back()

browser.forward()

This command is used to navigate forward in browser history.

The syntax is as follows:

browser.forward()

browser.refresh()

This command is used to refresh the present webpage.

The syntax is as follows:

browser.refresh()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

24. WebdriverIO — Browser Navigation
Commands

WebdriverIO

 74

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Navigation', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 // navigate to another url

 browser.navigateTo("https://www.tutorialspoint.com/codingground.htm")

 //navigate back in history

 browser.back()

 //get title back in browser history

 console.log('Back in Browser history: ' + browser.getTitle())

 //navigate forward in history

 browser.forward()

 //get title forward in browser history

 console.log('Forward in Browser history: ' + browser.getTitle())

 //refresh browser

 browser.refresh()

 //get title after refresh

 console.log('Page Title after refresh: ' + browser.getTitle())

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

WebdriverIO

 75

After the command has been executed successfully, the page title obtained on navigating

back in browser history - About Careers at Tutorials Point - Tutorialspoint is printed.

Then, the page title obtained on navigating forward in browser history - Free Online IDE

and Terminal is printed.

Finally, the page title obtained after page refresh - Free Online IDE and Terminal is

printed.

WebdriverIO

 76

We can handle checkboxes in the UI while automating a test using WebdriverIO. The

checkboxes are identified in the html code with the tagname as input and type as

checkbox.

The following screen will appear on your computer:

25. WebdriverIO — Handling Checkboxes and
Dropdowns

WebdriverIO

 77

Methods to work with Checkboxes

Some methods to work with checkboxes are as follows:

click()

It is used to check a checkbox.

The syntax is as follows:

let p = $('#loc')

p.click()

isSelected()

It is used to check if an element of type checkbox is selected or not. It returns a Boolean

value (true if checked, false if not).

The syntax is as follows:

let p = $('#loc')

p.isSelected()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Checkbox', function(){

 // launch url

 browser.url('https://the-internet.herokuapp.com/checkboxes')

 //identify checkbox with CSS then click

 const p = $("input[type='checkbox']")

 p.click()

WebdriverIO

 78

 //verify if checked with assertion

 expect(p).toBeSelected()

 //uncheck checkbox

 p.click()

 //verify if not checked with assertion

 expect(p).not.toBeSelected()

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, all the Assertions are executed as

per expectation and we have received a passed test.

Handling Dropdowns

We can handle drop downs in the UI while automating a test using WebdriverIO. The

static drop downs are identified in the html code with the tagname as select and its

options have the tagname as option.

The following screen will appear on your computer:

WebdriverIO

 79

Methods for Static Dropdowns

Some methods to work with static dropdowns are as follows:

selectByVisibleText

This method is used to select an option which matches with the visible text of an option

passed as a parameter to this method.

The syntax is as follows:

let p = $('#loc')

p.selectByVisibleText('By Subject')

selectByAttribute

This method is used to select an option which matches with the value of any attribute

passed as a parameter to this method.

The syntax is as follows:

let p = $('#loc')

p.selectByAttribute('value', 'subject')

Here, the option has the attribute with value as subject.

selectByIndex

This method is used to select an option which matches with the index/position of an

option passed as a parameter to this method. The index starts with 0.

The syntax is as follows:

let p = $('#loc')

p.selectByIndex(1)

getValue()

This method is used to get the attribute value of an option selected in the dropdown.

The syntax is as follows:

let p = $('#loc')

WebdriverIO

 80

p.getValue()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Drodowns', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/tutor_connect/index.php')

 //identify dropdown

 const p = $("select[name='selType']")

 //select by index

 p.selectByIndex(1)

 //get option selected

 console.log(p.getValue() + ' - option selected by index')

 //select by visible text

 p.selectByVisibleText('By Subject')

 //get option selected

 console.log(p.getValue() + ' - option selected by visible text')

 //select by value attribute

 p.selectByAttribute('value', 'name')

 //get option selected

 console.log(p.getValue() + ' - option selected by attribute value')

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

WebdriverIO

 81

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, first the value of the option selected

with the option index - name is printed in the console.

Then, the value of the option selected with the option visible text - subject is printed in

the console.

Finally, the value of the option selected with the option attribute value - name is printed

in the console.

WebdriverIO

 82

WebdriverIO can perform operations like hovering a mouse on an element by using the

moveTo method. This method shall move the mouse to the middle of the element.

The syntax is as follows:

let p = $('#loc')

p.moveTo()

In the below image, on hovering over the Mouse Hover button, the Top and Reload

buttons get displayed.

On moving the mouse out of the Mouse Hover button, the Top and Reload buttons get

hidden.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

26. WebdriverIO — Mouse Operations

WebdriverIO

 83

 it('Mouse Operatio', function(){

 // launch url

 browser.url('https://courses.letskodeit.com/practice')

 //identify element then hover mouse

 const e = $(".dropbtn")

 //scroll to element then mouse hover

 e.scrollIntoView()

 e.moveTo()

 browser.pause(2000)

 //verify if sub-element display on hovering

 console.log($('=Top').isDisplayed())

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the boolean value is printed in the

console. This is returned by the isDisplayed() function which returns true if an element is

displayed on the page.

WebdriverIO

 84

A new child window can open on clicking a link or a button. WebdriverIO by default has

control over the main browser window, in order to access the elements on the child

window, the WebdriverIO control has to be switched from the main page to the child

window.

Methods for Child Windows

Some of the methods to work with child windows are as follows:

browser.getWindowHandles()

This method yields the window handle ids of all the currently opened browser windows in

the form of a list. If there are two opened windows, the zero index of the list has the

handle id of the parent window and the first index shall point to the window handle of

the child.

The syntax is as follows:

var x = browser.getWindowHandles()

browser.getWindowHandle()

This method yields the window handle id of the browser which is in focus.

The syntax is as follows:

let l = browser.getWindowHandle()

browser.switchToWindow('<window handle id>')

This method is used to switch focus from one browser window to another opened window

whose window handle id is passed as a parameter to this method.

The syntax is as follows:

browser.switchToWindow(x)

In the below image, on clicking the Sign in with Apple button, a child window opens

having the browser title as Sign in with Apple ID. Let us try to switch to the child window

and access elements there.

27. WebdriverIO — Handling Child Windows/Pop
ups

WebdriverIO

 85

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Child Window', function(){

 // launch url

 browser.url('https://secure.indeed.com/account/login')

 //identify element then click

WebdriverIO

 86

 $('#apple-signin-button').click()

 //get all window handle ids in list

 var l = browser.getWindowHandles()

 //switch to child window

 browser.switchToWindow(l[1])

 //get page title of child window

 console.log(browser.getTitle() + ' - Page title of child window')

 //close child window

 browser.closeWindow()

 //switch to parent window

 browser.switchToWindow(l[0])

 //get page title of parent window

 console.log(browser.getTitle() + ' - Page title of parent window')

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, first the page title of the child

window - Sign in with Apple ID gets printed in the console. Then, the page title of the

parent window - Sign In | Indeed Accounts get printed in the console.

WebdriverIO

 87

WebdriverIO can handle hidden elements. There are occasions when submenus get

displayed only on hovering over the main menu. These submenus are initially hidden

with the CSS property - display:none.

In the below image, on hovering over the Sign in menu, the Sign in button gets

displayed.

On moving the mouse out of the Sign in menu, the Sign in button gets hidden.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Invisible Element', function(){

 // launch url

28. WebdriverIO — Hidden Elements

WebdriverIO

 88

 browser.url('https://www.amazon.com/')

 //identify element then hover mouse

 const e = $("#nav-link-accountList")

 e.moveTo()

 browser.pause(2000)

 //click on hidden element

 $('=Sign in').click()

 //get page title

 console.log(browser.getTitle() + ' - Page title after click')

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the page title obtained by clicking

the hidden Sign in button - Amazon Sign-In gets printed in the console.

WebdriverIO

 89

The frames in an html code are represented by the frames/iframe tag. WebdriverIO can

handle frames by switching from the main page to the frame.

Methods for Frames

Some methods to work with frames are as follows:

browser.switchToFrame('<frame id/index/locator>')

This method is used to switch focus from the main page to a frame. The frame id, index

or locator is passed as a parameter to this method.

The syntax is as follows:

browser.switchToWindow(x)

To switch the focus from the frame to the main page, we have to pass null as a

parameter to the browser.switchToFrame method.

Let us see the html code of an element inside a frame and obtain the text - BOTTOM

inside it.

The tagname highlighted in the above image is frame and the value of its name attribute

is frame-bottom.

29. WebdriverIO — Frames

WebdriverIO

 90

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Frames', function(){

 // launch url

 browser.url('https://the-internet.herokuapp.com/nested_frames')

 //switch to frame

 browser.switchToFrame($("frame[name='frame-bottom']"))

 //identify element with tagname

 const p = $('<body>')

 //get text inside frame

 console.log(p.getText() + ' - Text inside frame')

 //switch to main page

 browser.switchToFrame(null)

 });

});

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation

The following screen will appear on your computer:

WebdriverIO

 91

After the command has been executed successfully, the text inside the frame - BOTTOM

gets printed in the console.

WebdriverIO

 92

WebdriverIO can perform mouse operations like drag and drop using the dragAndDrop

method. With this, we execute clicking and holding events on the present object

(source), then pass the object to the target element. Finally, release the mouse.

The syntax is as follows:

let p = $('#loc')

let t = $('#target')

p.dragAndDrop(t)

Here, p is the source locator and t is the destination locator.

Let us perform the drag and drop functionality for the below elements:

In the above image, the element with the name - Drag me to my target has to be

dragged and dropped on the element - Dropped!

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which is as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

30. WebdriverIO — Drag and Drop

WebdriverIO

 93

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Drag and Drop', function(){

 // launch url

 browser.url('https://jqueryui.com/droppable/')

 //maximize browser

 browser.maximizeWindow()

 //switch to frame

 browser.switchToFrame($(".demo-frame"))

 //identify source element

 const src = $('#draggable')

 //identify target element

 const trg = $('#droppable')

 //drag and drop

 src.dragAndDrop(trg)

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

WebdriverIO

 94

After execution, the element with the name - Drag me to my target has been dragged

and dropped on the element - Dropped!

WebdriverIO

 95

WebdriverIO can perform mouse operations like double click using the doubleClick

method. With this, we can perform double clicking on the given element on the

webpage.

The syntax is as follows:

let p = $('#loc')

p.doubleClick()

Let us perform the double click on the below element:

Here, it is seen that on double clicking the Double-Click me To See Alert button, an alert

box gets generated.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Double Click', function(){

31. WebdriverIO — Double Click

WebdriverIO

 96

 // launch url

 browser.url('http://only-testing-

blog.blogspot.com/2014/09/selectable.html')

 //identify element then double click

 $("button").doubleClick()

 //get Alert Text

 console.log(browser.getAlertText() + ' - Alert Text')

 //accept Alert

 browser.acceptAlert()

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titledWdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the Alert text is generated on

double-click - You double clicked me.. Thank You.. gets printed in the console.

WebdriverIO

 97

We can handle cookies using WebdriverIO. A cookie helps to identify a user. It is an

efficient technique to pass information from one site session to another or in between

sessions of two connected websites.

Methods for Cookies

We can add, delete and obtain a cookie with WebdriverIO using the following methods:

browser.setCookies

This is used to set a single cookie or multiple cookies for the present page. To set a

cookie for a page, we have to first launch and stay on that page.

The syntax is as follows:

browser.setCookies({cookie, cookie.name, cookie.value, cookie.path,

cookie.domain, cookie.secure, cookie.httpOnly, cookie.expiry})

Here, cookie is the cookie object or object array and can contain the following values:

 cookie.name: It is an optional parameter and refers to the cookie name.

 cookie.value: It is an optional parameter and refers to the cookie value.

 cookie.path: It is an optional parameter and refers to the cookie path. The

default value is /(if it is not added while adding a cookie).

 cookie.domain: It is an optional parameter and refers to the cookie domain. The

default value is the present browsing context’s active document’s URL domain (if

it is not added while adding a cookie).

 cookie.secure: It is an optional parameter to check if the cookie is secured. The

default value is false (if it is not added while adding a cookie).

 cookie.httpOnly: It is an optional parameter to check if the cookie is of type

HTTP. The default value is false (if it is not added while adding a cookie).

 cookie.expiry.

browser.getCookies

This is used to get a cookie from the existing page. If the cookie name is provided as a

parameter to this method, then that particular cookie shall be obtained. Else, all the

cookies from the present page shall be obtained.

The syntax is as follows:

//to get a specific cookie

browser.getCookies(['Topic'])

32. WebdriverIO — Cookies

WebdriverIO

 98

Or,

//to get all cookies

browser.getCookies()

browser.deleteCookies

This is used to delete a cookie from the existing page. If the cookie name is provided as

a parameter to this method, then that particular cookie shall be deleted. Else, all the

cookies from the present page shall be deleted.

The syntax is as follows:

//to delete a specific cookie

browser.deleteCookies(['Topic'])

Or,

//to delete all cookies

browser.deleteCookies()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Cookies', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/index.htm')

 //set cookies

 browser.setCookies([

 {name: 'topic1', value: 'WebdriverIO'},

WebdriverIO

 99

 {name: 'topic2', value: 'Selenium'}

])

 //get a particular cookie

 const t = browser.getCookies(['topic1'])

 console.log(t);

 //get all cookies

 const a = browser.getCookies()

 console.log(a);

 //delete a cookie with name topic2

 browser.deleteCookies(['topic2'])

 d = browser.getCookies()

 console.log(d)

 //delete all cookies

 browser.deleteCookies()

 m = browser.getCookies()

 console.log(m)

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

WebdriverIO

 100

After the command has been executed successfully, first the cookie details having the

name as topic1 get printed in the console. Then, both the cookie details having names as

topic1 and topic2 get displayed.

The following screen will appear on your computer:

WebdriverIO

 101

Then, we deleted the cookie with the name topic2, so the other cookies got printed in

the console. Finally, on deleting all the cookies, an empty array is printed in the console.

WebdriverIO

 102

We can handle radio buttons in the UI while automating a test using WebdriverIO. The

radio buttons are identified in the html code with the tagname as input and type as

radio.

The following screen will appear on your computer:

Methods for Radio Buttons

Some methods to work with radio buttons are as follows:

click()

It is used to select a radio button.

The syntax is as follows:

const l = $('.rad')

l.click()

isSelected()

It is used to check if an element of type radio is selected or not. It returns a Boolean

value (true if selected, false if not).

The syntax is as follows:

const l = $('.rad')

l.isSelected()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

33. WebdriverIO — Handling Radio Buttons

WebdriverIO

 103

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Radio Button', function(){

 // launch url

 browser.url

('https://www.tutorialspoint.com/selenium/selenium_automation_practice.htm')

 //identify radio button with CSS then click

 const p = $("input[value='1']")

 p.click()

 //verify if selected

 console.log(p.isSelected())

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

WebdriverIO

 104

After the command has been executed successfully, the boolean value is printed in the

console. This is returned by the isSelected() function which returns true as the radio

button is selected in the previous step.

WebdriverIO

 105

Chai is an assertion library for nodes. It is mainly used in the BDD and TDD framework.

It can easily be integrated with any JavaScript testing framework. The official

documentation of Chai is available in the below link:

https://www.npmjs.com/package/chai

For installation of Chai and making its entry in the package.json file, run the following

command:

npm install --save-dev chai

The details on the package.json file are discussed in detail in the Chapter titled

Package.json.

The following screen will appear on your computer:

34. WebdriverIO — Chai Assertions on
webelements

https://www.npmjs.com/package/chai

WebdriverIO

 106

After installation we have to add the below statement to add expected style Chai in our

code.

require('chai').expect

The syntax for Chai assertion is as follows:

const c = require('chai').expect

 c(p.getValue()).to.equal('subject')

Let us implement a Chai assertion and verify if the option selected in the below

dropdown is as per the expected result.

WebdriverIO

 107

The details on how to handle a dropdown is discussed in detail in the Chapter - Handling

Dropdowns.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

require('chai').expect

//import chai library

const c = require('chai').expect

describe('Tutorialspoint application', function(){

 //test case

 it('Drodowns with Chai Assertion', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/tutor_connect/index.php')

 //identify dropdown

 const p = $("select[name='selType']")

 //select by index

 p.selectByIndex(1)

 //get option selected

 console.log(p.getValue() + ' - option selected by index')

 //verify option selected with chai assertion

WebdriverIO

 108

 c(p.getValue()).to.equal('name')

 //select by visible text

 p.selectByVisibleText('By Subject')

 //get option selected

 console.log(p.getValue() + ' - option selected by visible text')

 //verify option selected with chai assertion

 c(p.getValue()).to.equal('subject')

 //select by value attribute

 p.selectByAttribute('value', 'name')

 //get option selected

 console.log(p.getValue() + ' - option selected by attribute value')

 //verify option selected with chai assertion

 c(p.getValue()).to.equal('name')

 });

});

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, first the value of the option selected

with the option index - name is printed in the console. Then, the value of the option

WebdriverIO

 109

selected with the option visible text - subject is printed in the console. Finally, the value

of the option selected with the option attribute value - name is printed in the console.

Also, we get a PASSED result, pointing to the fact that all the Chai assertions applied on

the dropdown have passed.

Let us implement another Chai assertion and verify if the alert text obtained is as per the

expected result.

The details on how to handle an alert are discussed in detail in the Chapter titled Alerts.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

//import chai library

const c = require('chai').expect

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Alerts with Chai Assertion', function(){

 // launch url

 browser.url('https://the-internet.herokuapp.com/javascript_alerts')

 //identify element with xpath then click

 $("//*[text()='Click for JS Prompt']").click()

WebdriverIO

 110

 //check if Alert is open

 console.log(browser.isAlertOpen())

 //get Alert Text

 console.log(browser.getAlertText() + ' - Alert Text')

 //verify Alert text with Chai assertion

 c(browser.getAlertText()).to.equal("I am a JS prompt")

 //accept Alert

 browser.acceptAlert()

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, at first true is printed in the console

as it is returned by the browser.isAlertOpen() method. Then, the Alert text - I am a JS

prompt is printed in the console.

Also, we get a PASSED result, pointing to the fact that the Chai assertion applied on the

alert text has passed.

WebdriverIO

 111

Multiple windows/tabs can open on clicking a link or a button. WebdriverIO by default

has control over the main browser, in order to access the elements on the other tabs,

the WebdriverIO control has to be switched from the main browser window to the

opened tab.

Methods for Multiple Windows

Some methods to work with multiple windows or tabs are as follows:

browser.getWindowHandles()

This method yields the window handle ids of all the currently opened browser windows in

the form of a list. If there are two opened windows, the zero index of the list has the

handle id of the parent window and the first index shall point to the window handle of

the tab.

The syntax is as follows:

var x = browser.getWindowHandles()

browser.getWindowHandle()

This method yields the window handle id of the browser which is in focus.

The syntax is as follows:

let l = browser.getWindowHandle()

browser.switchToWindow('window handle id')

This method is used to switch focus from the browser window in focus to another opened

browser window whose window handle id is passed as a parameter to this method.

The syntax is as follows:

browser.switchToWindow(x)

In the below image, on clicking the Click Here link, a new tab opens having the browser

title as New Window. Let us switch to the new tab and access elements in there.

35. WebdriverIO — Multiple Windows/Tabs

WebdriverIO

 112

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which is as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Tab windows', function(){

 // launch url

 browser.url('https://the-internet.herokuapp.com/windows')

 //identify element then click

 $('=Click Here').click()

 //get all window handle ids in list

 let w = browser.getWindowHandles()

 //switch to tab

 browser.switchToWindow(w[1])

 //get page title of tab

 console.log(browser.getTitle() + ' - Page title of tab')

WebdriverIO

 113

 //close child window

 browser.closeWindow()

 //switch to parent window

 browser.switchToWindow(w[0])

 //get page title of parent

 console.log(browser.getTitle() + ' - Page title of parent window')

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the page title of the tab window -

New Window gets printed in the console. Then, the page title of the parent window - The

Internet gets printed in the console.

WebdriverIO

 114

We can perform scrolling operations with the WebdriverIO by using the scrollIntoView

method. This method does not accept any parameter and can be applied to the browser

object or on a particular element.

The syntax is as follows:

const p = $('#loc')

p.scrollIntoView()

Or,

browser.scrollIntoView()

In the below image, let us scroll to the footer element link - Helping and click on it.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO.

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Scroll', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/index.htm')

36. WebdriverIO — Scrolling Operations

WebdriverIO

 115

 //identify element

 const e = $("=Helping")

 //scroll to element

 e.scrollIntoView()

 e.click()

 //get page title

 console.log(browser.getTitle() + ' - Page time after click')

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the page title of the page obtained

on clicking the link after scrolling - Helping Tutorials Point - Tutorialspoint gets printed in

the console.

WebdriverIO

 116

WebdriverIO is capable of handling Alerts.

Methods for Alerts

Some methods to work with Alerts are listed below:

browser.isAlertopen()

This method is used to verify if there is an alert in the page. It returns true, if the Alert is

present, else returns false

The syntax is as follows:

browser.isAlertopen()

browser.getAlertText()

This method is used to get the text present in the Alert.

The syntax is as follows:

browser.getAlertText()

browser.acceptAlert()

This method is used to accept an Alert.

The syntax is as follows:

browser.acceptAlert()

browser.dismissAlert()

This method is used to dismiss an Alert.

The syntax is as follows:

browser.dismissAlert()

In the below image, on clicking Click for JS Alert, an Alert is displayed. Let us obtain the

text on the Alert.

37. WebdriverIO — Alerts

WebdriverIO

 117

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Alerts', function(){

 // launch url

 browser.url('https://the-internet.herokuapp.com/javascript_alerts')

 //identify element with xpath then click

 $("//*[text()='Click for JS Prompt']").click()

 //check if Alert is open

 console.log(browser.isAlertOpen())

 //get Alert Text

 console.log(browser.getAlertText() + ' - Alert Text')

 //accept Alert

 browser.acceptAlert()

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

WebdriverIO

 118

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, the first true is printed in the

console as it is returned by the browser.isAlertOpen() method. Then the Alert text - I am

a JS prompt is printed in the console.

WebdriverIO

 119

To debug the WebdriverIO code in the Visual Studio Code editor, we have to enable the

nightly version of JavaScript Debugger. Debugging is one of the most important steps for

identifying the root cause of an error in code.

It also helps to understand the program flow.

Enable Debugging

The steps to enable debugging are listed below:

Step 1: Navigate to the link below if you are using Windows or Linux operating system:

https://marketplace.visualstudio.com/items?itemName=ms-vscode.js-debug-nightly

Step 2: Click on Install. The following screen will appear on your computer:

If we are using a Mac operating system, we can skip Steps 1 and 2.

Step 3: Create a folder called the .vscode within the project. Then create a file

launch.json within this folder. The following screen will appear on your computer:

38. WebdriverIO — Debugging Code

https://marketplace.visualstudio.com/items?itemName=ms-vscode.js-debug-nightly

WebdriverIO

 120

Step 4: Add the below code in the launch.json file.

{

 "configurations": [

 {

 "name": "Webdriver IO",

 "type": "node",

 "request": "launch",

 "args": ["wdio.conf.js", "--spec", "${file}"],

 "cwd": "${workspaceFolder}",

 "autoAttachChildProcesses": true,

 "program": "${workspaceRoot}/node_modules/@wdio/cli/bin/wdio.js",

 "console": "integratedTerminal",

 "skipFiles": [

 "${workspaceFolder}/node_modules/**/*.js",

 "${workspaceFolder}/lib/**/*.js",

 "<node_internals>/**/*.js"

]

WebdriverIO

 121

 },

]

}

Step 5: Add a breakpoint in the spec file. The following screen will appear on your

computer:

Step 6: Go to the Run menu and select the option Start Debugging. The following screen

will appear on your computer:

Step 7: The execution shall get triggered in Debugger mode, with an orange band at the

bottom. Debugger attached message should be reflected in the Terminal console. Also,

the execution shall halt at the breakpoint. We have to manually resume it again.

The following screen will appear on your computer:

WebdriverIO

 122

WebdriverIO

 123

We can capture screenshots while working on automation tests developed in

WebdriverIO using the saveScreenshot method. A screenshot is generally captured if we

encounter an application error.An Assertion has failed, and so on.

The syntax for capturing screenshots is as follows:

browser.saveScreenshot("name along with path to store screenshot")

Here, the name along with the path where the screenshot is to be saved is passed as a

parameter to the method. In the WebdriverIO, we don't have the option to capture a

screenshot for a particular element.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){

 //test case

 it('Screenshot', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/index.htm')

 //identify element then enter text

 const e = $("#gsc-i-id1")

 e.setValue('WebdriverIO')

 //capture screenshot of page

 browser.saveScreenshot("screenshot.png")

 });

39. WebdriverIO — Capturing Screenshots

WebdriverIO

 124

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation. The following

screen will appear on your computer:

After the command has been executed successfully, a file named screenshot.png gets

generated within the project folder. It contains the captured screenshot of the page.

WebdriverIO

 125

Inside the WebdriverIO, the JavaScript Executor is bundled and called executeScript. The

JavaScript Executor is capable of performing all the tasks on a page whenever normal

WebdriverIO methods are not working as expected.

The syntax for the Javascript executor is as follows:

browser.executeScript("JavaScript command")

Actions with Javascript Executor

Some actions performed with JavaScript Executor are as follows:

To enter a text - AB into an edit box having id as txt, use the command given below:

browser.executeScript("document.getElementById('txt').value='AB'")

To click a link, use the command given below:

browser.executeScript("document.querySelector('.lnk').click()")

The command given below is used for refreshing windows:

browser.executeScript("history.go(0)")

var t = js.executeScript("return

document.getElementById('bln').innerHTML").toString()

The command to scroll down a page by 350 pixels is as follows:

browser.executeScript("window.scrollBy(0,350)")

browser.executeScript("window.scrollTo(0, document.body.scrollHeight)")

The command given below is used to scroll down upto an element having class as tcl.

browser.executeScript("document.querySelector('.tcl').scrollIntoView()")

browser.executeScript("window.history.back()")

Following command is used to go forward in browser history:

browser.executeScript("window.history.forward()")

browser.executeScript("return document.title")

40. WebdriverIO — JavaScript Executor

WebdriverIO

 126

The waitUnit method in WebdriverIO is a standard method to wait for an action /element

on the page. It waits for a criterion to be met (a true value).

For example, we often wait for a text to appear on the page.

The syntax for waitUnit method is as follows:

browser.waitUntil(condition, { timeout, timeoutMsg, interval })

Here,

 condition = condition for waiting on.

 The timeout is in milliseconds. The default value is 5000 and is an optional

parameter.

 The timeoutMsg is the error message thrown when there is a timeout and it is an

optional parameter.

 The interval is the interval in between verification. The default value is 500 and it

is also an optional parameter.

In the below image, let us click on the link - Team and wait for the text - Team @

Tutorials Point to appear on the page.

On clicking the link Team, the highlighted message is displayed on the page.

41. WebdriverIO — Waits

WebdriverIO

 127

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows: Step 1: Install NodeJS. The details on how to perform this

installation are given in detail in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint Application', function(){

 //test case

 it('Waits', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify then click link - Team

 const p = $('=Team')

 p.click()

 //wait for text

 browser.waitUntil(

 () => $('<h1>').getText() === 'Team @ Tutorials Point',

 {

 timeout: 6000,

 timeoutMsg: 'expected text did not match'

 }

);

 //identify required text

 const m = $('<h1>')

 console.log(m.getText())

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

WebdriverIO

 128

The details on how to create a Configuration file are discussed in detail in the Chapter

titledWdio.conf.js file and Chapter titled Configuration File generation.The following

screen will appear on your computer:

After the command has been executed successfully, the text generated on clicking the

Team link - Team @ Tutorials Point gets printed in the console.

WebdriverIO

 129

We can run WebdriverIO tests in parallel mode. For this we have to create more than

one spec file within the test folder. The numbers of threads in which parallel tests can

run are defined by the parameters in the Configuration file - wdio.conf.js file.

The details on how to create a Configuration file are discussed in detail in the Chapter -

Wdio.conf.js file and Chapter - Configuration File generation to store WebdriverIO

settings.

Let us take a project having three spec files within the test folder. The following screen

will appear on your computer:

To execute all these files in a parallel mode, we have to first specify

'./test/specs/**/*.js' under the specs field in the wdio.conf.js file. This means all the

42. WebdriverIO — Running Tests in Parallel

WebdriverIO

 130

spec files within the test folder would get triggered on running the command given

below:

npx wdio run wdio.conf.js.

The following screen will appear on your computer:

After the command has been executed successfully, we shall see all the three spec files -

testcase1.js, testcase2.js and testcase3.js getting triggered for execution

simultaneously.

The following screen will appear on your computer:

Also, the maxInstances field in the wdio.conf.js determines the maximum number of

threads possible to trigger the parallel execution. By default, the value is set to 10. Here,

we have three spec files, so the maxInstances = 10, holds true.

WebdriverIO

 131

The following screen will appear on your computer:

There is another field called capabilities within the wdio.conf.js file. Within this, we have

a parameter called the maxInstances. It determines the number of instances that can be

opened simultaneously by the Chrome browser during the parallel run.

Let us set the value 3 for the parameter maxInstances outside the capabilities field and

then set the value 2 for the field maxInstances inside the capabilities field. The value set

for maxInstances within the capabilities overrides the value set for maxInstances outside

the capabilities.

Run the following command:

WebdriverIO

 132

npx wdio run wdio.conf.js

After the command has been executed successfully, we shall see two spec files -

testcase1.js and testcase2.js getting triggered for execution simultaneously in Chrome.

They are initially in RUNNING status.

Once the status of testcase2.js moved to PASSED, the third spec testcase3.js moved to

the status of RUNNING. The following screen will appear on your computer:

WebdriverIO

 133

We can achieve data driven testing with WebdriverIO. Data driven testing is required

when we need to execute the same test case multiple times with different combinations

of data. Here, we shall see how to use an external JSON file to hold data.

In the WebdriverIO project all the test files are created within the specs folder. The

specs folder resides within the test folder. We shall create another folder, say testData

within the test folder.

The testData folder shall contain the JSON files which hold the different sets of data in

key-value pairs. Also, if we have three test files within the spec folder and we want to

have data driven testing for all these files, we need to create three JSON files.

Each of these JSON files should be used dedicatedly for each test file within the spec

folder. We shall create a JSON file, say test1.json within the testData folder.

Now, add the below data within this file:

[

{

 "email":"test@gmail.com",

 "password":"12"

},

{

 "email":"test12@gmail.com",

 "password":"34"

}

]

The following screen will appear on your computer:

43. WebdriverIO — Data Driven Testing

WebdriverIO

 134

We shall parse this JSON file and convert it in string format. This is done by adding the

below library:

const s =require('fs')

Then to parse the JSON file, we shall use the readFileSync method and pass the relative

path of the JSON file file as a parameter to this method. Finally, store this in an object,

say c. This object shall contain all the data.

let c = JSON.parse(s.readFileSync('test/testData/test1.json'))

Then, we shall iterate the same test case over the two sets of data with the help of the

loop. This loop has to be implemented just before the block and it should pass the data

keys as declared in the JSON file.

With the above set of data, we shall validate the login page of the LinkedIn application.

On clicking on the Sign in button after entering an email and password of less than 6

characters, an error message - The password you provided must have at least 6

characters should be thrown.

The following screen will appear on your computer:

WebdriverIO

 135

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

WebdriverIO

 136

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

//import chai library

const c = require('chai').expect

//library for parsing JSON file

const s =require('fs')

let h = JSON.parse(s.readFileSync('test/testData/test1.json'))

// test suite name

describe('Tutorialspoint application', function(){

 //iterate the test case

 h.forEach(({email,password}) =>{

 //test case

 it('Data Driven testing', function(){

 // launch url

 browser.url('https://www.linkedin.com/login')

 //identify the email field then enter key - email

 $("#username").setValue(email)

 //identify password field then enter key - password

 $("#password").setValue(password)

 //identify Sign in button then click

 $("button[type='submit']").click()

 //verify error message

 const e = $('#error-for-password')

 console.log(e.getText() + ' - Error Text')

 //verify Alert text with Chai assertion

 c(e.getText()).to.equal("The password you provided must have at least 6

characters.")

 });

 });

});

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

WebdriverIO

 137

After the command has been executed successfully, the error text - The password you

provided must have at least 6 characters gets printed in the console twice.

Also, it shows the message 2 passing as the same test case defined in one block has

executed two times with two different sets of data.

WebdriverIO

 138

We can control running tests using the command-line parameters. Let us take a

scenario, where we have four test files within the spec folder in the WebdriverIO project.

The following screen will appear on your computer:

Suppose we want to trigger only the files testcase1.js and testcase2.js using the

command-line parameters. To do this we have to add a parameter called suites in the

Configuration file wdio.conf.js file.

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

44. WebdriverIO — Running Tests from
command-line parameters

WebdriverIO

 139

Let us consider that the files testcase1.js and testcase2.js belong to a suite called the

group1 and the files testcase3.js and testcase4.js belong to a suite called the group2.

We need to add this information to the wdio.conf.js file under the suite parameter as

given below.

 suites: {

 group1: ['test/specs/testcase1.js', 'test/specs/testcase2.js'],

 group2: ['test/specs/testcase3.js', 'test/specs/testcase4.js']

 },

The following screen will appear on your computer:

To trigger the test files testcase1.js and testcase2.js belonging to group1, we have to

run the command given below:

npx wdio run wdio.conf.js --suite group1

The following screen will appear on your computer:

WebdriverIO

 140

After the command has been executed successfully, we see only the two test files

testcase1.js and testcase2.js under the specs folder have been triggered for execution.

Suppose we want to trigger only the file testcase3.js using the command-line

parameters. To trigger only the test file testcase3.js, we have to run the following

command:

npx wdio run wdio.conf.js --spec test/specs/testcase3.js

The following screen will appear on your computer:

After the command has been executed successfully, we see only the test file testcase3.js

under the specs folder has been triggered for execution.

WebdriverIO

 141

Besides, if we want to trigger multiple test files testcase3.js and testcase4.js, the

command should be as follows:

npx wdio run wdio.conf.js --spec test/specs/testcase3.js,

test/specs/testcase4.js

Suppose we want to exclude only the file testcase4.js from execution. To do this we

have to add a relative path of the file that we want to exclude under the exclude

parameter in the Configuration file wdio.conf.js file as given below.

 exclude: [

 // 'path/to/excluded/files'

 'test/specs/testcase4.js'

],

The following screen will appear on your computer:

Then, we have to run the below command:

npx wdio run wdio.conf.js

The following screen will appear on your computer:

WebdriverIO

 142

After the command has been executed successfully, we see the test file testcase4.js

under the specs folder has been excluded from execution.

WebdriverIO

 143

A test file within the specs folder consists of the describe and it blocks. A describe block

refers to the test suite and the it block refers to the test case. A describe block can have

multiple blocks.

The details on how to create describe and it blocks are discussed in detail in the Chapter

titled Happy path flow with Webdriverio.

To verify if a new build obtained from the development team is a healthy one, we need

not execute all the test cases within a suite. A few test cases are identified for

smoke/sanity testing and they are executed once we have a new build.

We can use the Mocha option called Grep to group test cases and run them together. For

this, we have to add a keyword, say Smoke within the it description. Then at the

runtime, we can instruct the WebdriverIO test to only trigger the it blocks which have

Smoke in its description.

Let us take a test file having four it blocks. Out of the four it blocks, there are two it

blocks having the keyword Smoke in description.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO

which are as follows:

Step 1: Install NodeJS. The details on how to perform this installation are given in detail

in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in

the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in

detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are

given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in

the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

//import chai library

const c = require('chai').expect

//library for parsing JSON file

const s =require('fs')

let h = JSON.parse(s.readFileSync('test/testData/test1.json'))

// test suite name

describe('Tutorialspoint application', function(){

 //iterate the test case

45. WebdriverIO — Execute Tests with Mocha
Options

WebdriverIO

 144

 h.forEach(({email,password}) =>{

 //test case

 it('Data Driven testing', function(){

 // launch url

 browser.url('https://www.linkedin.com/login')

 //identify the email field then enter key - email

 $("#username").setValue(email)

 //identify password field then enter key - password

 $("#password").setValue(password)

 //identify SSign in button then click

 $("button[type='submit']").click()

 //verify error message

 const e = $('#error-for-password')

 console.log(e.getText() + ' - Error Text')

 //verify Alert text with Chai assertion

 c(e.getText()).to.equal("The password must be provided.")

 });

 });

 // it is blocked with Smoke keyword

 it('Identify element with Id - Smoke', function(){

 // launch url

 browser.url('https://the-internet.herokuapp.com/redirector')

 //identify element with id then click

 $("#redirect").click()

 //obtain page title

 console.log('Page title after click: ' + browser.getTitle())

});

 // it block with Smoke keyword

 it('Identify element with Tagname - Smoke', function(){

 // launch url

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with tagname then obtain text

 console.log($("<h1>").getText() + " - is the text.")

});

 //test case

 it('Identify element with Class Name', function(){

 // launch url

WebdriverIO

 145

 browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with Class Name then obtain text

 console.log($(".heading").getText() + " - is the text.")

});

});

To trigger only the it blocks connected with Smoke, run the Configuration file -

wdio.conf.js file with the following command:

npx wdio run wdio.conf.js --mochaOpts.grep Smoke

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, we find out of the four it blocks,

only two it blocks (having Smoke tag in description) have been executed.

WebdriverIO

 146

In WebdriverIO, we have a reporter plugin to generate Allure Test Reports. An Allure is a

light-weight test reporter tool that creates a brief and well-documented report based on

the test results from an automation run.

For installation of Allure and creating it’s entry in the package.json file, we have to run

the below mentioned command:

npm install @wdio/allure-reporter --save-dev

The details on package.json are discussed in the Chapter titled Package.json file.

The following screen will appear on your computer:

After installation of the Allure, we have to configure the output directory in the

Configuration file wdio.conf.js within the reporter options by adding the below code.

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

 reporters: [['allure', {

 outputDir: 'allure-results',

46. WebdriverIO — Generate HTML reports from
Allure

WebdriverIO

 147

 disableWebdriverScreenshotsReporting: false,

 }]],

The following screen will appear on your computer:

Here, the outputDir has the default directory of /allure-results. After automation is

completed, we shall find this directory generated. It shall contain the .xml files for each

of the test files within the specs folder included in the run along with .txt, .png and other

files.

Also, to attach the screenshot of the failure test, we have set the parameter

disableWebdriverScreenshotsReporting to false.

However, we also need to add an afterStep hook in the wdio.conf.js file having the code

as shown below:

 afterStep: function (test, scenario, { error, duration, passed }) {

 if (error) {

 browser.takeScreenshot();

 }

 }

The following screen will appear on your computer:

WebdriverIO

 148

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

After the command has been executed successfully, a folder called allure-results(as

specified in the wdio.conf.js) gets generated within the WebdriverIO project. It contains

the reports in xml format.

Next, we have to convert these reports to the HTML format. For this, we shall first install

the Allure Commandline tool for generating Allure reports from the test results.

This is done by running the below given command:

npm install -g allure-commandline --save-dev

After the installation, we can generate the results in HTML format with the below

mentioned command:

allure generate [allure_output_dir] && allure open

To override an existing result, we have to run the following command:

allure generate [allure_output_dir] --clean && allure open

The following screen will appear on your computer:

WebdriverIO

 149

After the command has been executed successfully, a browser is opened containing the

test result. The following screen will appear on your computer:

On clicking the failed test(marked with red), we shall get the details of the test along

with the expected, actual output and screenshot of the failure(obtained on expanding

Response).

The following screen will appear on your computer:

