Web Driver 1O

tutorialspoint

SI MPLY EASY LEARNINDG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.comftutorialspoint

WebdriverIO

About the Tutorial

WebdriverlO is used to automate any tests designed for a present-day application
developed in React, Angular, Polymerer Vue.js, and so on. This tutorial shall provide you
with a thorough insight on WebdriverIO and its different terminologies. The tutorial
contains practical examples on all important topics.

Audience

This tutorial is designed for professionals working in software testing who want to hone
their skills on a robust automation testing tool like WebdriverIO. It is implemented in
Node.js and comes under the umbrella of Selenium.

Prerequisites

Prior to going through this tutorial, you should have a fair knowledge on JavaScript and
object oriented programming concepts. Besides, a good understanding of basics in
testing is important to proceed with this tutorial.

Copyright & Disclaimer

© Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point
(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or
republish any contents or a part of contents of this e-book in any manner without written
consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely
as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)
Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of
our website or its contents including this tutorial. If you discover any errors on our
website or in this tutorial, please notify us at contact@tutorialspoint.com

@- tutorialspoint

EIMPLYEAGSYLEARMNINIG

mailto:contact@tutorialspoint.com

WebdriverIO

Table of Contents

10.

11.

12,

13.

14.

15.

16.

ADOUL the TULOTTAl c..eeiieieeieee ettt sb e bt e et et e b e b e e b e e reeresmnesanes i
YT e 1= o TP PP ST PR PSPPI i
e =T =T o UL =TT PP TP PO PPPPPTRTRN i
(00T 03V T4 o A D T =1 ' =Y USRI i
TaBIE OF CONTENTS ittt e e st e st e st e et e e sab e e e bt e sabeesaneesabeesaneenn i
WebdriverlO — INtrodUCtionccuuueeeiiiiiiiiiiiieciiiinieree s sss e sass s e e s s s s s snns 1
WebdriverlO — PrereqUISite....ccccciiiiiiiiiiiiiiiiccceieeerreersens s e s e s e s e s s s s s e s s s s s s s s s s s s sessssssssssssssssssnnnnnns 4
WebdriverlO — Archit@CtUreicoveeiiiiiiiiiiiiniieen et as e s s as e s san e sssanes 6
WebdriverlO — Getting Started wWith NOdeJS..........cooieiiiiiiiiiiicrrrrr e e e e e s s s e eeees 7
WebdriverlO — Installation of NPIMeciiiiiiiiiiiiiiiiieenieeineesisseessssse e ssssssesssase s ssssasessenns 11
Create NPM ProjeCt ..o e e e 11
WebdriverlO — VS Code Installationcoceiiiiieiiiiiieiiiiiniiieniiieieeeesseeesesenseeesnsseens 13
WebdriverlO — Package.jSON.......ccciiiiiiiiiiiiiiiiiiiiiiiiisissnns 15
WebdriverlO — Mocha INStallation...........eeiiiiiiiiieiiiiiiiiiiieneerseessre s sssseesens 18
WebdriverlO — Selenium Standalone Server Installationcccoceeiiiieiiiiiieiiiiiieeiiineneinneneneeeenn. 20
WebdriverlO — Configuration File generationccceveieiiiiiiiiieiceicssscsesseeeeeeee s ssse e e eesess e s s e sessssssssnens 22
(O1g =l Y oTol s - IY o L=l o 1T PURPNY 24
WebdriverlO — VS Code INtelliSENSEccueeeeeriiiiiiiierieiiiiciertee e ssess e anes 28
Add INtElliSENSE t0 VS COUE......ciiiiiiiieiiii e st s b e saae s r e e e snaesneas 28
WebdriverlO — Wdio.conf.js fileccceveiiiiiiiiiiiiccccceeirrrrrerrrrrsrrrrrrrrres s e s e e e s s e s e s s e e e s s e s s s s s e ssesensennnnes 31
WebdriverlO — Xpath LoCator......ccciiiiiiiiiiiiiiiiiiiniiniiiniinnnssssssnssnns 35
XPath LOCAtOr With TEXL «...veeeiieeiiiiiieeie ettt ettt e sbe e bbb e s bt e e saee e bt e e saeesbeeenneesneas 38
WebdriverlO — CSS LOCAtOrceeiiiieriiiiieeiiiieneiiieteiisieetissneesiessssessessnesssssseesesssnessesssnesssssssesssssnessenss 41
WebdriverlO — Link TeXt LOCATONceiiiiieeiiiiiieiiisieteiiiineeiisnneiiissnesiiseeeiissseesisssesiesssesssssssesssssssesess 44
Partial LINK TEXE LOCATON ..c.ueiiiiiiiieeiiteeete ettt sttt e st e s e et e s b e e sne e e sbneeebee e smneeneas 45
WebdriverlO — ID LOCAtOrccccvuueeeeiiiiiiiiieteeii e e e sss s sas s e s s s sass e e e s s e s snnns 48

EIMPLYEAGSYLEARMNINIG

@- tutorialspoint

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

WebdriverIO

WebdriverlO — Tag Name LOCAtOr......ccciiiiiiiiiiiiiiiiiiinieinnieesnnsesnssssssssssssssssssss s s s s s s s s ssssssssssssssssssssssssssssssnnns 51
WebdriverlO — Class Name LOCAtOFcccceiiiieieiiinietiiiiieeiiisneeiiiseessssessssssessssssessssssesssssseessssssessenns 53
WebdriverlO — Name LOCAtOFccveeiiiiiueeiiiiiieiiiieteiiieesisneessssesssssseessssasessssssesssssssesssssssessssssessenns 55
WebdriverlO — Expect statement for assertionscccccvvviiiiiiiiiiiisssssseenn 57
AsSertions apPlied 10 DrOWSEISoo.ii it ettt e sare s bt e sane s re e e saeeeneas 57
Assertions applied 0N ElEMENTSeiiiiii e ettt srr e st sare s b e e sneeeneas 57
Assertions applied £0 MOCK OBJECES........uiiiiiiie et 61
WebdriverlO — Happy path floWccooeiiiiiiiiiiccc s e e s e e e e e e e 64
WebdriverlO — General Browser COMmMaNScccceeriisueeriisseeiiissneiiissseesissseesisssessssssesssssseessssssessenss 66
WebdriverlO — Handling BrOWSEF SiZ€ccceieiiiiiiiiiiiiiiiiiiiisiisssssssssssssssssssssssesssssssssssssssssssssssssssssssssssnnes 71
WebdriverlO — Browser Navigation COmMmMandscccceeeiiiiiiiiiiieiiiinsssnes 73
WebdriverlO — Handling Checkboxes and Dropdowns.........cccceeveiiiiiiiiiiiiiinieescsesesssssssssssssesssssessssssssssenns 76
HaNAIING DIOPAOWNS ...ttt ettt se et e sat e st e st e e e ab e e sabeesae e e sabeesaeeesase e bt e e smbeesseeesnbeeseeennnennnes 78
WebdriverlO — Mouse Operations.......cccciiiiiiiiiiiiiiiiiniiisssnns 82
WebdriverlO — Handling Child WiNdOWS/POP UPScccccvreeererreerresseeeeecsseeeessssseessssssessessssessessasessessnssssnns 84
WebdriverlO — Hidden EI@mEeNtscocveeiiiiiiiiiiiieiiiniitiinniineiseneisesesessnesiessnessssssessssseesens 87
WebdriverlO — Frames........ooiciivuereeiiiiiiiiieerieeiiiiisseeseeessssssssssse e ssssssssssessssssssssssseesssssssssssssensssssssssnns 89
WebdriverlO — Drag and DIOPccccceeeeeeiciiiiiieemenieiieiiseennsssssesseseennssssssssssssnnssssssssssssnnnsssssssssssnnnssssssssanes 92
WebdriverlO — Double ClicK.........eeeeeiiiiiiiieireiiiiiieeteeeininenreer e aess e s sanes 95
WebdriverlO — COOKIES........ccvirimrreiiiiiiittteeiiiceree s sss s e s s sass e e e s s s s snnns 97
MELNOAS FOr COOKIES ...ttt ettt st st sb et e bt et e e aeesb e e b e e b e et e sabesaeesbeeseee 97
WebdriverlO — Handling Radio BUEONSccciiiiiiiiiiiiiiiiiiiinnnnnnnnnnnsssssssssssssssssssssssssssssssssssssnns 102
WebdriverlO — Chai Assertions on webelements...........cccveeiiiiineiiiiiiiiiiinneineneeseeen. 105
WebdriverlO — Multiple WindOWS/Tabsccccceeeerreerieirieeeeessneeessseseesssssessessssessessssessssssessessasesssssnsssess 111
Methods for MUILIple WINAOWScoeeuiiiiiiie ettt tre e s e e e et e e snaae e e snnaeesenteeesnnneas 111
WebdriverlO — Scrolling Operationsccoviieeeeeiceiiiiiieeiensseesrrseenesssseesseesesnnssssssssesesnnnssssssssssennnnssnses 114
WebdriverlO — AlEItS......uuiiiiiiiiiiietieiiiiieeree s as s sas e e s s ans s e e e s s aas 116
MEETNOAS FOI ALBIES ..ottt ettt e be e s b e e bb e e sse e e st e e sna e e sabeesnbeesmreesnneens 116

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

38.

39.

40.

41.

42,

43.

44,

45.

46.

WebdriverIO

WebdriverlO — Debugging Codeciiiiiiiiiiiiiiiiiiiiiiiiiniiiiinen e s s e se s s sssessssssssssnnnans 119
[0] o] [l D= YU T =T V-SSR 119
WebdriverlO — Capturing SCreenshots........cccoiviiiiiiiiiiiiiiiiiin s ss s e s e s e s s s eeees 123
WebdriverlO — JavaScript EXECULOr.......cciiiiiiiiiiiiiiiiiiiiiiiiiiiisisissssssssssssssssssssssssssnsssssssssssssssssssssssssssnns 125
Actions With JaVasCript EXECULONiiiiiiiiiiiiie ettt st e b e s e snee e 125
WebdriverlO — Watsceeeiiiiiiiiiieniiiiiiiiiiinereeisississssseesssssssssassse s ss s sasss e s s s ssssssssssse s s s ssssssssnnsesssssses 126
WebdriverlO — Running Tests in Parallel............ovviieeeiiiiiiiiiienienniniseneesnsnsreesssasssee s 129
WebdriverlO — Data Driven TESHING ...cccccviiiiiiiiiiiiiiiiiiiirieeernrrserrese s s ss s e s e s e s ss s s s s s s s s sssesssssssssssnnnns 133
WebdriverlO — Running Tests from command-line parameters.........ccccceeeiiiiiiiiiiiiiiiiiiieenceeeeeeeseeeeeeeenns 138
WebdriverlO — Execute Tests with Mocha Options.........cccevveiiiiiiiiiiccccccccr e e e e e e e 143
WebdriverlO — Generate HTML reports from AllUFeccceveeeeieiiiicicccccccceeereeeeeerreeeeee e s e e e e e e e eeees 146

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

1. WebdriverlO — Introduction

WebdriverIO helps to automate any tests designed for a present-day application
developed in React, Angular, Polymerer Vue.js, and so on. Besides, it can also be used in
Android and iOS platforms.

WebdriverIO is implemented in Node.js and the automation code is written in JavaScript.
It comes under the umbrella of Selenium. All the capabilities of Selenium are also
available in WebdriverIO, along with certain accessory assertions available for
validations.

Now-a-days, the front end of the majority of applications is developed with the
JavaScript frameworks like React, Angular, and so on. WebdriverlIO is really useful for
testing these applications.

This is because WebdriverIO coding is also done in JavaScript. This tool falls under the
roof of Selenium and also there are some additional APIs. If we are aware of Selenium,
then gaining knowledge in WebdriverIO is a simple task.

WebdriverIO can also be used for testing normal applications but if we are using
WebdriverIO for verifying any application implemented in React, Angular, Polymerer
Vue.js, and so on, we can enjoy an additional edge in building a robust framework.

If we are creating Selenium tests in JavaScript, then WebdriverIO should be the choice.
There are other tools like Cypress which is based on the JavaScript framework but it
does not fall under the umbrella of Selenium.

If we follow the npm trends for WebdriverIO downloads for the last few years, we shall
observe an upward trend towards the use of WebdriverIO available from the link
mentioned below:

https://www.npmtrends.com/webdriverio

The following screen will appear on your computer:

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://www.npmtrends.com/webdriverio

WebdriverIO

npm trends

webdriverio

m () ®
E ickage
Downloads in past 2 Years ~
@ webdriverio

1,000,000

900,000

800,000

700,000

600,000

500,000

400,000

300,000

200,000

100,000

0

2020 2021

Reports

Some of the reports generated in WebdriverIO are as follows:

Allure
Spec
JUnit
HTML
JSON
Cucumber JSON

Services

Some of the services offered by WebdriverIO are as follows:

Appium

Docker

Selenium Standalone
ChromebDriver
Firefox Profile

DevTools

Testing Frameworks

Some of the testing frameworks supported by WebdriverIO are as follows:

&

Cucumber

tutorialspoint

EIMPLYEAEYLEARHNINTIG

WebdriverIO

e Jasmine

e Mocha

M Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

2. WebdriverlO — Prerequisite

As a prerequisite for WebdriverIO, we need to have an editor to write the JavaScript
code. For this, we can use the Visual Studio Code. We can download it from the below
link:

https://code.visualstudio.com/

Step 1: Based on the local operating system we have for example - macOS, Linux or
Windows, we need to select the link for download.

The following screen will appear on your computer:

c @ code.visualstudio.com

Visual Studio Code Do Qs

Code editing.
Redefined.

Download Mac Universal <
Stable Build

Stable Insiders

Python

GitLens — Git su

Debugger for C

macOS Universal J_; ¢ Language Sup..

Windows x64 User Installer vscode-icons

Linux x64 .deb \.mm
pm toolir
Install

Pmaster C0+41t ©0A0 X1 O Gatsby Develop (gatsby-graphql-app)
Other downloads

Step 2: A zip file gets downloaded after clicking the Download button. Click on this zip
file and the Visual Studio Code application should be available on the machine.

The following screen will appear on your computer:

B VSCode-darwin-universal.zip

€9 Visual Studio Code 463.3 MB Application

Step 3: Double-click on Visual Studio Code and it gets launched along with the welcome
page. The following screen will appear on your computer:

@ tutorialspoint

https://code.visualstudio.com/

WebdriverIO

LN N J Welcome

) Welcome X

Customize

Tools and languages
Ir | support for

Recent

No recent folders

Settings and keybindings

Install the set d key

Color theme
(\VELGRY

Learn

Find and run all commands

¥ Show welcome page on startup

Interactive playground

Try out essential editor fea

tutorialspoint

EIMPLYEAGSYLEARMNINIG

J

3. WebdriverlO — Architecture

WebdriverIO architecture consists of the following components:

e NodelS

e WebdriverIO

e JavaScript

e JSON Wire Protocol
e Services

e Browsers

e Application

Nodejs is enabled to execute the JavaScript runtime environment. It is actually an open-
source project. WebdriverIO is developed on Nodejs and JavaScript is the script
implemented by the end-user using the WebdriverIO library.

Thus the JavaScript implemented by the end-user passes a request using the
WebdriverIO via Nodejs to the Services (in the format of an HTTP command). The entire
process is done following the JSON Wire Protocol.

Services send the request to the browsers like Chrome, Firefox, and so on to execute a
test against the application under test. Thus the Services can be termed as a middle-
layer between the browser and the automation framework.

@ tutorialspoint

EIMPLYEASYLEARNING

4. WebdriverlO — Getting Started with NodelS

WebdriverIlO coding is done using JavaScript. For this, NodelS has to be installed since it
is a JavaScript engine. Only after its installation, we can execute WebdriverIO tests. The
steps to configure NodelS are listed below:

Step 1: Launch the application using the below link:

https://nodejs.org/en/download/

Step 2: As per the local operating system (Windows, Mac or Linux) we are using, click
on the link to download the Installer. The following screen will appear on your computer:

& https://nodejs.org/en/download/|

HOME ABOUT 0 ADS DOCS GET INVOLVED SECURITY CERTIFICATION NEWS

Downloads

Latest LTS Version: 14.17.0 (includes npm 6.14.13)

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS Current
Recommended For Most Users Latest Features
1 ? ~
L] | ' .'
Windows Installer macOS Installer Source Code
node-v14,17.0-x86.msi node-v14.17.0.pkg node-v14,17.0 tar.gz
Windows Installer (.msi) 32-bit 64-bit
Windows Binary (.zip) 32-bit 64-bit
macOS Installer (.pkg) 64-bit
macOS Binary (.tar.gz) 64-bit
Linux Binaries (x64) 64-bit
Linux Binaries (ARM) ARMVT ARMV8
|Source Cade podeyld 17 Otargs

Step 3: Once the installer is downloaded, click on it. Navigate to the Node.js Installer
welcome screen. Click on Continue. The following screen will appear on your computer:

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://nodejs.org/en/download/

WebdriverIO

@ ‘& Install Node.js

Welcome to the Node.js Installer

. This package will install:
® |Introduction

+ Node.jsv14.17.0to /usr/local/bin/node
* npmv6.14.13 10 /usr/local/bin/npm

[continue]

Step 4: Agree to the terms of agreement of Nodejs. The following screen will appear on
your computer:

w \tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

To continue installing the software you must agree to the terms of the
software license agreement.

Click Agree to continue or click Disagree to cancel the installation and quit
the Installer.

7 Read License 7 Disagree 7 Agree

Step 5: Click on Install.

Step 6: Once the success message of Nodejs installation is displayed, click on Close. The
following screen will appear on your computer:

tutorialspoint

EIMPLYEASYLEARNING

WebdriverIO

© & Install Node.js g

The installation was completed successfully.

This package has installed:
Introduction

* Node.js v14.17.0t0 /usr/local/bin/node

License
* npmv6.14.13t0 /usr/local/bin/npm

Destination Select
Installation Type Make sure that /usr/local/bin is in your $PATH.
Installation

® Summary

Close

Step 7: To check if Nodejs is installed successfully, open the terminal and run the
command:

node

The following screen will appear on your computer:
CoT T U gETTT T E TS ST YO T T ST oS

(base) debomitabhattacharjee®@Debomitas—MacBook—-Air ~ % node
Welcome to Node.js v14.17.0.

Type ".help" for more information.

> 1

The version of the Nodejs installed in the machine should be displayed.

10

tutorialspoint

EIMPLYEAGSYLEARMNINIG

5. WebdriverlO — Installation of NPM

Once Nodejs has been installed, we have to create a NPM folder. NPM is actually the
package manager for writing tests in JavaScript. The official page for NPM is available in
the below link:

https://www.npmjs.com/search?g=webdriverio

Once we launch this page, enter WebdriverIO in the search box and click on Search, to
get the npm packages for WebdriverIO. The following screen will appear on your
computer:

& National Public Mania Products Pricing Documentatic
I1|II'I1 Q. webdriverio Sigl
463 packages found 1|2
Sort Packages L
webdriverio exactmatch

Qptimal Next-gen browser and mobile automation test framework for Node.js
Popularity webdriverio webdriver selenium appium saucelabs sauce labs mocha nodeUnit buster devtools puppeteer
Quality vows jasmine View more

R i, wdio-user published 7.7.3 +« 4 hours ago
Maintenance L

The steps to create a NPM project are listed below:
Step 1: Create an empty folder, say webdriverIO in a location.

Step 2: Open the terminal and move from the current directory to the directory of the
empty folder that we have created.

Step 3: Run the following command:

npm init -y

The y parameter is given to set the default values. The following screen will appear on
your computer:

11

@ tutorialspoint

EIMPLYEASYLEARNING

https://www.npmjs.com/search?q=webdriverio

WebdriverIO

e T o L e B S TR S T] T AT Twrew Wil Ly uuvw

(base) debomitabhattacharjee@Debomitas—-MacBook—-Air ~ % cd webdriverIO
base) debomitabhattachariee®Debomitas—MacBook-Air webdriverI0Q % npm init -y
Wrote to /Users/debomitabhattacharjee/webdriverIO/package.json:

{
"name": "webdriverIO",
"version": "1.0.0",
"description": "',
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

I
"keywords": [],
"author": "",
"license": "ISC"

Step 4: The output obtained on running the command in Step 3 says that all the default
configurations have been captured within the package.json file. It is generated within the
folder we have created (named webdriverIO) in Step 1.

The following screen will appear on your computer:

4 webdriverlO

package.json

This package.json contains all the dependencies which we need to work with the
WebdriverIO project. To get any package under NPM, we can refer to the link:

https://www.npmjs.com/.

12

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

6. WebdriverlO — VS Code Installation

In this chapter, let us understand how to install the Visual Studio (VS) Code in
WebdriverlIO.

The steps to install the Visual Studio Code are listed below:
Step 1: Navigate to the below link:

https://code.visualstudio.com/

Step 2: Depending on the local operating system we have for example - macOS, Linux
or Windows, we need to choose the link for download.

The following screen will appear on your computer:

c @ code.visualstudio.com
Visual Studio Code Do R s

is now available! Read about the new features and fixes from April.

Code editing.
Redefined.

Download Mac Universal <
Stable Build

Stable Insiders

Python

GitLens — Git su

macOS Universal 4 4

Windows x64 User Installer

Linux x64 .deb
rpm

Other downloads

Step 3: A zip file gets downloaded after clicking the Download button. After downloading
this file has completed, click on it and the Visual Studio Code application should become
available for use.

The following screen will appear on your computer:

B VSCode-darwin-universal.zip

€9 Visual Studio Code 463.3 MB Application

13

@ tutorialspoint

https://code.visualstudio.com/

WebdriverIO

Step 4: Double-click it and the Visual Studio Code application should launch along with
the welcome page.

The following screen will appear on your computer:

200 Welcome

) Welcome X

Customize

Tools and languages

Install support for

Settings and keybindings
Recent nsk

nstall the settings and keyboard

No recent folders

Color theme

Learn

Find and run all commands

Rapidly access and search command

Interface overview

>et a visual overlay highlighting the major c«

¥ Show welcome page on startup
Interactive playground

Step 5: Click on the Open folder link and import the folder that contains the
package.json file. The details of how the package.json file got created are discussed in
detail in the Chapter titled Installation of NPM.

The following screen will appear on your computer:

O package.json — webdriverlO

EXPLORER {} package.json 1 X

~ WEBDRIVERIO {} package.json > ...
{} package.json 1 f

"version": "1.0.0",
"description": "",
"main": "index.js",
> Debug

"scripts": {

“test": "echo \"Error: no test specified\" && exit 1"

bir
"keywords":
"author":
"license":

14

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

7. WebdriverlO — Package.json

Once the package.json file gets generated, we need to install other npm packages for
WebdriverlO. The details of how the package.json file got created are discussed in detail
in the Chapter titled Installation of NPM.

The necessary packages for WebdriverIO in the NPM registry can be found in the below
link:

https://www.npmjs.com/package/webdriverio

The following screen will appear on your computer:

& npmjs.com/package/webdriverio &5

npm Q_ search packages Sign Up S

Wondering what's next for npm? Check out our public roadmap! »

webdriverio
7.7.3 « Public « Published 8 hours ago

B Readme B Explore & 29 Dependencies & 388 Dependents @ 382 Versions

WebdriverlO Instal
: - i webdriveri
Next-gen browser and mobile automation test framework for Node.js

+ Weekly Downloads
This package provides an easy to manage APl and a lot of syntactical sugar on top of the e o

WebDriver specification. You can use WebdriverlO as a standalone package or via a testrunner 843,436

using @wdio/cli . WebdriverlO allows to run tests locally using the WebDriver or Chrome Version License
DevTools protocol as well as remote user agents using cloud providers like Sauce Labs. 7.3 MIT
Installation Unpacked Size Total Files
547 kB 362
You can install WebdriverlO via NPM:
Issues Pull Requests
npm install webdriverio 118 11
Homepage

For installation of WebdriverIO, we have to run the below command from the terminal:

npm i webdriverio

or

npm install webdriverio.

The following screen will appear on your computer:

15

' tutorialspoint

EIMPLYEASYLEARNING

https://www.npmjs.com/package/webdriverio

WebdriverIO

EXPLORER {} package.jsor

WEBDRIVERIO {} package.json

> node_modules 1

"name" :
"version":
"description
"main": "index.

{} package-lock.json
{} package.json

"scripts": {
"test": "“echo

h

"keywords":

"author"

“License*: “ISC"

"dependencies":

TERMINAL

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverIO % |npm install webdriverio

> core-js-pure@3.13.1 postinstall /Users/debomitabhattacharjee/webdriverI0/node_modules/core-js—pure
> node -e "try{require('./postinstall')}catch(e){}"

npm created a lockfile as package-lock.json. You should commit this file.
npm XY webdriverI0@1.0.0 No description
npm [webdriverI0@1.0.0 No repository field.

+ webdriverio@7.7.3
added 166 packages from 242 contributors and audited 166 packages in 10.995s

22 packages are looking for funding
run “npm fund® for details

found @ vulnerabilities

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverIO % [|

After the command gets executed successfully, the package.json now displays the
WebdriverIO version installed.

We can verify if the WebdriverIO has installed successfully, if the folder node_modules
created within the project contains the webdriverio folder.

The following screen will appear on your computer:

16

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

WebdriverIO

< > node_modules g8 ¢ e h O

unbzip2-stream universalify util-deprecate uuid validate-npm-
package-license

webdriver webdriverio which wrap-ansi wrappy

y18n yallist yargs yargs-parser yarn-install

7zin-stream

17

tutorialspoint

EIMPLYEASYLEARNING

8. WebdriverlO — Mocha Installation

Mocha is a testing framework based on JavaScript which is built on Nodejs. It makes
asynchronous test execution flow interesting and simple. Mocha tests can be run serially.

It is capable of producing accurate and customizable reports. Also, the uncaught
exceptions can be easily tagged with the proper test cases. The details of Mocha can be
found in the below link:

https://www.tutorialspoint.com/tesults/tesults integrating your automated tests.htm

To install Mocha packages in the NPM registry, the command is as follows:

npm install mocha

The following screen will appear on your computer:

18

' tutorialspoint

EIMPLYEASYLEARNING

https://www.tutorialspoint.com/tesults/tesults_integrating_your_automated_tests.htm

WebdriverIO

{} package.json > ...
1

"version": "1.0.0",

"description": "",

"main": "index.js",

D> Debug

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

}l

"keywords": [],

"author": "",

"license": "ISC",

"dependencies": {
"webdriverio": "~7.7.3"

}l

"devDependencies": {
Yawdio/cila i taT 7.3

}

PROBLEMS {1 OUTPUT TERMINAL DEBUG CONSOLE 1: zsh 8 1 v

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverIQ %|npm install mocha
npm ' webdriverI0@1.0.0 No description

npm YN webdriverI0@1.0.0 No repository field.

+ mocha@8.4.0
added 37 packages from 25 contributors and audited 339 packages in 3.417s

45 packages are looking for funding
run “npm fund® for details

found @ vulnerabilities

After the command has been executed successfully, the Mocha version installed gets
reflected within the package.json file.

19

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

9. WebdriverlO — Selenium Standalone Server
Installation

WebdriverIO works under the roof of Selenium. To establish communication with the
browser, we are required to install the Selenium standalone server.

To install Selenium standalone server, we have to run the following command:

npm install sel -stan

Or,

npm i selenium-standalone.

The following screen will appear on your computer:

{} package.json > ...
{

"version": "1.0.0",

"description": "",

"main": "index.js",

D Debug

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

}l

"keywords": [1,

"author": "",

"license": "ISC",

"dependencies": {
"mocha: "~8.4.0",
"selenium-standalone": "76.23.0",
WeDdariverio . 7ol

b

"devDependencies": {
"@wdio/cli": "~7.7.3"

b

PROBLEMS (1 OUTPUT TERMINAL DEBUG CONSOLE 1: zsh v +v @0 mw -~

found @ vulnerabilities

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverIO %|npm install selenium-standalone
npm AN webdriverI0O@l.0.0 No description
npm [AR) webdriverI0@l.0.0 No repository field.

+ selenium-standalone@6.23.0
added 10 packages from 13 contributors and audited 349 packages in 2.393s

45 packages are looking for funding
run “npm fund® for details

found @ vulnerabilities

tutorialspoint

EIMPLYEASYLEARNING

WebdriverIO

After the command has been executed successfully, the Selenium standalone server
package version installed gets reflected within the package.json file.

tutorialspoint

EIMPLYEAEYLEARHNINTIG

&

21

10. WebdriverlO — Configuration File generation

WebdriverIO tests are controlled from a Configuration file. It is often considered the
heart of WebdriverIO. It contains details on what test cases to be executed, browser on
which the tests should run, global information - timeout, reports, screenshots and so on.

In WebdriverIO we do not execute a single test. We are required to trigger the
Configuration file with the help of the Test Runner. Test Runner scans the information
provided in the Configuration file and then triggers the tests accordingly.

To get the Test Runner, we have to install the WebdriverIO CLI dependencies. To install
this and save it in the package.json file, we have to run the below mentioned command:

npm i --save-dev @wdio/cli

After this command has been executed successfully, the version of CLI dependency shall
be reflected within the package.json file. The following screen will appear on your
computer:

22

@ tutorialspoint

EIMPLYEASYLEARNING

WebdriverIO

{} package.json > ...
‘ {

“name": “webdriver10",

"version": 9.0“,

"description": "",

"main": "index.js",

D> Debug

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

}l

"keywords": [1,

Sauthor=ah

"license": "ISC",

"dependencies": {
"mocha": "~8.4.0",
"selenium-standalone": "~6.23.0",
"webdriverio": "~7.7.3"

}l

"devDependencies": {
vawdie/clidisiag iy gs

PROBLEMS (1 OUTPUT TERMINAL DEBUG CONSOLE 1: zsh v +v [0 1y

(base) debomitabhattacharjee@Debomitas—-MacBook-Air webdriverI0 %|[npm i —-save-dev @wdio/cli
npm AN webdriverI0@1.0.0 No description
npm [ARY webdriverI0@l.0.0 No repository field.

+ @wdio/cli@7.7.3
updated 1 package and audited 349 packages in 4.649s

35 packages are looking for funding
run ‘npm fund® for details

found @ vulnerabilities

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverIO % []

To create a Configuration file, we have to run the below mentioned command:

npx wdio config -y

After this command has been executed successfully, the configuration file called the
wdio.conf.js gets created within our project. Also, the package.json file should now
contain some more dependencies under the devDependencies field.

The following screen will appear on your computer:

23

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

~~ WEBDRIVERIO b EF O & {} package.json > ..
> node_modules cdcd "selenium-standalone": "~6.23.0",
> test "webdriverio": "~7.7.3"

{} package-lock.json b
"devDependencies": {

{} package.json
p g J Il@wdio/clill: I|l\7.7.3||’

r

"@wdio/mocha-framework": "~7.7.3",
"@wdio/spec-reporter": "~7.7.3",
"chromedriver": "~91.0.0",
"wdio—-chromedriver-service": "~7.1.0"

Apart from the dependencies marked in the above image, we have to add one more
dependency so that the WebdriverIO commands can execute synchronously.

We have to add the dependency - "@wdio/sync": "<version number>" under the
devDependencies field. Then run the following command:

npm install

To run a Configuration file from the test runner, we have to run the below given
command:

npx wdio run wdio.conf.js

Create Mocha Spec File

After a Configuration file is created, we shall find a test folder generated within the
WebdriverIO project. The details on how to create a Configuration file are described in
the Chapter titledConfiguration File generation.

The following screen will appear on your computer:

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

24

WebdriverIO

v WEBDRIVERIO

> node_modules
Vv test
v pageobjects
JS login.page.js
JS page.js
JS secure.page.js
\/ specs

JS example.e2e.|s

{} package-lock.json

{} package.json

JS wdio.conf.js

If we expand this folder, we shall find two sub-folders - pageobjects and specs
containing JavaScript files created by default. These are basically sample tests provided
to guide the first time users to get accustomed with the Mocha framework.

Mocha is a testing framework based on JavaScript which is built on Nodejs. It makes
asynchronous test execution flow interesting and simple. Mocha tests can be run serially.

It is capable of producing accurate and customizable reports. Also, the uncaught
exceptions can be easily tagged with the proper test cases. The details of Mocha can be
found in the below link:

https://www.tutorialspoint.com/tesults/tesults integrating your automated tests.htm

As per the Mocha testing framework, all the test files are known as the spec files and
they should reside within the specs folder.

Blocks in Test File

A test file should have the following blocks:

tutorialspoint

EIMPLYEAEYLEARHNINTIG

https://www.tutorialspoint.com/tesults/tesults_integrating_your_automated_tests.htm

WebdriverIO

e describe: This is higher in hierarchy than the it block. A test file can have
multiple describe blocks. A describe block represents a test suite. It has two
arguments - description of the test suite and an anonymous function.

e it: This is lower in hierarchy than the describe block. A describe can have multiple
it blocks. An it block represents a test case and should be mandatory within a
describe block It has two arguments - description of the test case and an
anonymous function. The actual WebdriverIO code is implemented within the it

block.Steps to Create Mocha File

To create a Mocha file, let us follow the below steps:

Step 1: Right-click on the specs folder (which is within the test folder), then select New
File. The following screen will appear on your computer:

\ WEBDRIVERIO 3 B2 O &

> node_modules cdcdnpm

v test/specs

JS exall New File

SWEle New Folder
BMEl® Reveal in Finder

ILRWelled Open in Integrated Terminal

Step 2: Enter a filename, say testcasel.js.

The following screen will appear on your computer:

26

tutorialspoint

EIMPLYEAEYLEARHNINTIG

WebdriverIO

v WEBDRIVERIO
> node_modules
v test/specs
JS testcasel.js

{} package-lock.json

{} package.json

JS wdio.conf.js

Step 3: Add the below code in this file:

// test suite name
describe('Tutorialspoint Application', function () {
// test case name
it('Get Page Title', function (){
// URL launching
browser.url("https://www.tutorialspoint.com/about/about_careers.htm")
//print page title in console

console.log(browser.getTitle())

})s
})s

In the above code, the browser is the global object exposed by the WebdriverIO.

Please note: We cannot run this individual file directly. We shall take the help of the
Configuration file in order to execute it.

27

tutorialspoint

EIMPLYEAEYLEARHNINTIG

11. WebdriverlO — VS Code Intellisense

Once we have completed installation of the Visual Studio Code, we should add the
intellisense in the editor so that once we begin writing the WebdriverIO commands, the
auto-suggestions of the WebdriverIO methods are displayed.

The details on how to do a VS Code installation are discussed in detail in the Chapter
titled VS Code Installation.

This is a very important feature that should be added so that the end-users do not need
to memorize the raw code for the WebdriverlO.

Add intellisense to VS Code
The steps to add intellisense to the VS Code for the WebdriverIO are listed below:

Step 1: Click on the New File button appearing to the right of the WebdriverIO project.

The following screen will appear on your computer:

v WEBDRIVERIO
> node_modules
Vv test/specs
JS testcasel.js

{} package-lock.json

{} package.json

JS wdio.conf.js

Step 2: Enter the file name as jsconfig.json. Here, we have to specify the path of the
spec files where we are implementing our test.

If we want to apply intellisense feature to all the spec files within the test folder, we can
specify the relative path as test/spec/*.js.

The following screen will appear on your computer:

28

M Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

v WEBDRIVERIO
> node_modules
Vv test/specs

JS testcasel.js

{} jsconfig.json

{} package-lock.json
{} package.json

JS wdio.conf.js

Step 3: Add the below code inside the file.

WebdriverIO

{
"include": [
//relative path of all spec files
"test/specs/*.js",
"Hx/* json",
"node_modules/@wdio/sync"”,

"node_modules/@wdio/mocha-framework"

]
}

Step 4: In the spec file, start writing a WebdriverIO object or a method and we shall

obtain the entire auto - suggestions.

The following screen will appear on your computer:

®_. 7 . .
@tutomalspomt

WebdriverIO

JS testcasel.js @

test > specs > Js testcasel.js > & describe(' Tutorialspoint application’)

describe('Tutorialspoint application', (){

it('Get Page Title', Of

browser.
abc browser
CoNso abc console
abc describe
abc getTitle
abc it
abc log

30

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

12. WebdriverlO — Wdio.conf.js file

WebdriverlO tests are controlled from the Configuration file. It is often considered the
heart of WebdriverIO. It contains details on which spec files to be executed, browser on
which the tests should run, global information - base URL, timeout, reports, screenshots
and so on.

In WebdriverIO we do not execute a single test. We are required to trigger the
Configuration file with the help of the Test Runner. Test Runner scans the information
provided in the Configuration file and then triggers the tests accordingly.

To create a Configuration file, we have to run the below command:

npx wdio config -y

After this command has been executed successfully, the Configuration file called the
wdio.conf.js gets created within our project.

The following screen will appear on your computer:

v WEBDRIVERIO
> node_modules
> test

{} package-lock.json

{} package.json

Within this file, we have to specify the path of the spec file that we want to execute
within the specs parameter.

By default, the path provided is: ./test/specs/**/*.js. This means any .js file under
the sub-folder specs (which is under the folder test) should be picked for execution.

The following screen will appear on your computer:

31

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

v WEBDRIVERIO [} BT O & wdio.conf.js > [©] config
> node_modules

Vv test/specs

JS testcasel.js

{} jsconfig.json
{} package-lock.json

{} package.json specs: [
Js wdio.conf.js './test/specs/xk/*.js'
1,

To execute the test with the help of the wdio.conf.js file, we have to run the command:

npx wdio run wdio.conf.js

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverI0 % [npx wd
Execution of 1 workers started at 2021-06-06T03 04.671Z

@wdio/cli:launcher: Run onPrepare hook
chromedriver: Start Chromedriver (/Users/debomitabhattacharjee/webdriverI0/node_nodules/chromedriver/lib/chromed r/chromedriver) with args —port=9515 —url-base=/
chromedrive tarting ChromeDriver 91.0.4472.19 (1bf@21f248676a@b2ab3eed561d83a59e4. -heads/4472@{#288}) on port 9515
chromedrive nly local connections are allowed.
chromedriver: Please see https://chromedriver.chromium.org/security-considerations for suggestions on keeping ChromeDriver safe.
chromedriver: ChromeDriver was started successfully.
@wdio/cli:launcher: Run onWorkerStart hook
@wdio/local-runner: Start worker 8-@ with arg: run,wdio.conf.js
@wdio/local-runner: Run worker command: run
NNING in chrome - /test/specs .js
webdriver: Initiate new session using the WebDriver protocol
webdriver S i// lhost:9515/ses
webdriver: DATA {
capabilities
alwaysMatc yrowserNan c e', acceptInsecur
firstMatch

redCapabilities: { browserName: 'chrome', acceptInsecureCerts: true }

webdriver: navigateTo("https://www.tutorialspoint.com/about/about

webdriver: [POST] http://localhost:9515/session/bcal501bf3b9262415294489

webdriver: DATA { url: 'https://www.tutorialspoint.com/about/about_caree

webdriver: getTitle()

webdriver: [GET] http://localhost:9515/session/bcal501bf3b926241529448932037566/title
i rs at Tutorials Point - Tutorialspoint

ion()
webdriver: [DELET //1ocalhost:9515/session/bca1501b3b926241529448932037566
in chrome - /test/specs/testcasel.js
@wdio/cli:launcher: Run onComplete hook

[chrome 91.0. . x #0-8] Running: chrome (v91.0.44 7) on mac os X
[chrome 91.0.4472. os x #9-0] Session ID: bcal501bf3b926241529448932037566
[chrome 91.0. 7 #0-0]

[chrome .0.447 x #0-0] » /test/specs/testcasel.js

[chrome 91. . #0-0] Tutorialspoint application

[chrome .0.4472, £ x #0-0] Get Page Title

[chrome 91.0. . #0-0]

[chrome 91.0. . #0-0]

Spec Files: , 1 total (100% completed) in 00:00:08

@wdio/local-runner: Shutting down spawned worker
@wdio/local-runner: Waiting for ® to shut down gracefully
@wdio/local-runner: shutting down

After the command has been executed successfully, the page title of the application
launched is obtained in the console.

However, a lot of the logs got captured in the console. This is because the parameter
logLevel is set to info by default in the wdio.conf.js file.

The following screen will appear on your computer:

32

EIMPLYEAGSYLEARMNINIG

'j. tutorialspoint

WebdriverIO

WEBDRIVERIO Js wdio.conf.js > [] config
> node_modules

Vv test/specs

JS testcasel.js

{} jsconfig.json POQLEVEI: info

{} package-lock.json
{} package.json
Js wdio.conf.js

In order to get rid of some of the logs and to obtain only those which the test case
directs, we can set this parameter to silent.

The following screen will appear on your computer:
WEBDRIVERIO JS wdio.conf.js > [€] config > &
> node_modules
Vv test/specs

JS testcasel.js
logLevel: 'silent',

{} jsconfig.json

{} package-lock.json
{} package.json
Js wdio.conf.js

Again run the Configuration file with the following command:

npx wdio run wdio.conf.js

The following screen will appear on your computer:

33

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE 1: zsh

INFO @wdio/local-runner: Start worker 0-0 with arg: run,wdio.conf.js
[0-0] INFO @wdio/local-runner: Run worker command: run
[0-0] RUNNING in chrome - /test/specs/testcasel.js
(base) debomitabhattacharjee@ebomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-06T03:46:45.951Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] About Careers at Tutorials Point - Tutorialspoint
[0-0] PASSED in chrome - /test/specs/testcasel.js

"spec" Reporter:

.4472.
.4472.
.4472.
4472.
.4472.
.4472.
.4472.
.4472.

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

#0-0] Running: chrome (v91.0.4472.77) on mac os X
#0-0] Session ID: c87c645bc7851f5292b7331122e17927
#0-01]

#0-0] » /test/specs/testcasel.js

#0-0] Tutorialspoint application

#0-0] Get Page Title

#0-01]

#0-01]

(SIS IS IS IS IS IS S
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:07

After the command has been executed successfully, we find lesser logs and the page title
of the application launched - About Careers at Tutorials Point - Tutorialspoint is obtained
in the console.

34

@ \tutorialspoint

EIMPLYEAGSYLEARMNINIG

13. WebdriverlO — Xpath Locator

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can create an xpath for an element
for its identification. The rules to create a xpath expression are discussed below:

The syntax of xpath is

//tagname[@attribute="value']

Here, the tagname is optional.

For example,

//img[@alt="tutorialspoint']

Let us see the html code of the highlighted link - Home. The following screen will appear
on your computer:

Al Home th Jobs <7 Q/A 5 g 5 [l Whiteboard 1 Tutorix =4 Login

47.9

—_

2 Search HTML
<html class="fontawesome-i2svg-active fontawesome-12svg-complete"” lang="en-US"»> levent |scroll
<!--<![endif]--»
P <head> (=) </head>
w <body>
<!--Start of Body Content--»>
w <div class="mui-appbar-home™>
w <div class="mui-container™»
: :before
¥ <div class="tp-primary-header mui-top-home™>

w <3 href="https://www.tutorialspoint.com/index.htm” target="_blank" title="TutorialsPoint - Home">

x 'D Inspector Console O Debugger ‘N« Network {} Style Editor O Performance ﬁ Memory E Storage 'i‘ Accessibility 1‘3 What's Ne

+

¥ <svg class="svg-inline--fa fa-home fa-w-18" aria-hidden="true" data-prefix="fa" data-icon="home" rdle="img" xmlns="http://www.w3.org/2008/svg"

viewBox="0 @ 576 512" data-fa-i2svg="">l==¢/svg>
<!--<i class="fa fa-home"></is-->

whitespace

<spanrHome

3

</fdiv>
b <div class="tp-primary-header mui-top-ga™ = </div>
b <div class="tp-primary-header mui-top-ga™> = </div>
b <div class="tp-primary-header mui-top-tools™> (==/</div>
b <div class="tp-primary-header mui-top-coding-ground™> (= </div>
b <div class="tp-primary-header mui-top-upsc™> (s ¢/div>
P <div class="tp-primary-header mui-top-whiteboard™ (= </div>
kb <div class="tp-primary-header mui-top-tools™>/==/</div>
b <div class="tp-primary-header mui-top-tools"s == </divs
::after
</fdiv>

The xpath for element Home shall be as follows:

//a[@title="TutorialsPoint - Home'].

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

35

WebdriverIO

The following screen will appear on your computer:

(} Home th Jobs <7 QA &8 Tools </> Coding Ground & UPSC Notes 2] Whiteboard

&

{:} Inspector Console O Debugger N, Network {} Style Editor m Performance ﬁ Me

Run A v Q X @ ¥ Filter Output

$x("//a[@title="TutorialsPoint - Home|']") » $x("//a[@title="TutorialsPoint - Home']")

<)Arr‘ay[a%]

In the WebdriverIO code, we can specify the xpath expression of an element in the
below format:

$('value of the xpath expression')

Or, we can store this expression in a variable:

const p = $('value of the xpath expression')

Let us identify the text highlighted in the below image and obtain its text:

li.heading 310.39x54

About Tutorialspoint

Company

% ﬂ Elements Console @ Sources Network Perforr

»<div class="mini-logo">..</div>
v<ul class="toc chapters"> |) |
- <1i class="heading">About Tutorialspoint =

The xpath of the above highlighted element should be as follows:

//1i[@class="heading']

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

36

w \tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Identify element with Xpath', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with xpath then obtain text

console.log($("//li[@class="heading']").getText() + " - is the
text.")

})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js.

The details on how to create a Configuration file are discussed in detail in the Chapter

titled Wdio.conf.js file and Chapter titled Configuration File generation

The following screen will appear on your computer:

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

37

WebdriverIO

(base) debomitabhattacharjee@Debomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-06T18:31:14.754Z

0-0] RUNNING in chrome - /test/specs/testcasel.js
0-0] About Tutorialspoint - is the text.
0-0] PASSED in chrome - /test/specs/testcasel.js

' Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: e95d7ab4fl@bb5e3a3c7d3be631db7d3

.4472.
.4472.
.4472.
.4472.
.4472.
.4472.
.4472.

» /test/specs/testcasel.js
Tutorialspoint application
Identify element with Xpath

(SIS RS IS SRS RS IS
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:07

After the command has been executed successfully, the text of the element - About
Tutorialspoint is printed in the console.

Xpath Locator with Text

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

We can create an xpath for an element for its identification. However, there are
scenarios where there are no HTML attributes or tagname available to uniquely identify
an element.

In such a situation, we can create an xpath for an element with the help of the text
visible on the page by using the text function. The text function is case-sensitive.

The rule to create a xpath expression with visible text is discussed below:

The syntax of xpath is as follows:

//tagname[text()="displayed text'].

For example,

//1li[text()="WebdriverIO"']

Let us identify the element highlighted in the below image with the help of the visible
text in xpath:

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

38

WebdriverIO

li.heading 310.39 x54

About Tutorialspoint

Elements Console Sources Network Performance

<div class="mini-logo'">..</div>
<ul class="toc chapters">
<li class="heading">About Tutorialspoint

The xpath of the above highlighted element using the text() function shall be as follows:

//1i[text()="About Tutorialspoint']

To begin, follow Steps 1 to 5 from the Chapter - Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Identify element with Xpath - text()', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with xpath - visible text then obtain text

console.log($("//1li[text()="About Tutorialspoint']").getText() + " - is
the text.")

})s

tutorialspoint

EIMPLYEAGSYLEARMNINIG

39

WebdriverIO

1)

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js.

The details on how to create a Configuration file are discussed in detail in the Chapter
titledWdio.conf.js file and Chapter titled Configuration File generation

The following screen will appear on your computer:

(base) root@Debomitas-MacBook-Air webdriverI0 # npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-14T02:48:10.347Z

Spec Files: 1 passed, 1 total (100% completed) in 00:00:08

After the command has been executed successfully, the text of the element - About
Tutorialspoint is printed in the console.

40

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

14. WebdriverlO — CSS Locator

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can create a css for an element for
its identification. The rules to create a css expression are discussed below:

The syntax of css is as follows:

tagname[attribute="value']

Here, the tagname is optional. We can also specifically use the id and class attribute to
create a css expression.

With id, the format of a css expression should be tagname#id. For example, input#txt
[here input is the tagname and the txt is the value of the id attribute].

With class, the format of the css expression should be tagname.class.

For example,

input.cls-txt

Here, input is the tagname and the cls-txt is the value of the class attribute.

In the WebdriverIO code, we can specify the css expression of an element in the below
format:

$('value of the css expression')

Or, we can store this expression in a variable as follows:

const p = $('value of the css expression')

Let us identify the text highlighted in the below image and obtain its text:

@ tutorialspoint

EIMPLYEASYLEARNING

41

WebdriverIO

li.heading 310.39x54

About Tutorialspoint
o Company
X ﬂ Elements Console Sources Network Perforr

»<div class="mini-logo'>..</div>
v<ul class="toc chapters">

A
—
-
0
pa
Q
n
wn
I
=2
™
Q
o
-
=
(o}
V
=
o
o
=
+
=
=
+
(=)
=
{=is
Q
st
wn
©
(=}
-
=
+
A
~
—
=-
M
1

The css of the above highlighted element should be li.heading.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodeJ]S.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Identify element with CSS', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with CSS then obtain text

console.log($("1i.heading").getText() + " - is the text.")

})s

42

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titledWdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:
(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-06T18:39:50.634Z
1 RUNNING in chrome - /test/specs/testcasel.js
-0] About Tutorialspoint - is the text.
-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

Running: chrome (v91.0.4472.77) on mac 0S X
Session ID: 89fdb38998116955f66a22caff62bedc

» /test/specs/testcasel.js
Tutorialspoint application
Identify element with CSS

.0. X
L) X
.0. X
.0. X
.0. X
Sk X
.0. X
.0. X

, 1 total (100% completed) in 00:00:07

After the command has been executed successfully, the text of the element - About
Tutorialspoint is printed in the console.

43

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

15. WebdriverlO — Link Text Locator

Once we navigate to a webpage, we may interact with a webelement by clicking a link to
complete our automation test case. The locator link text is used for an element having
the anchor tag.

We can identify an anchor element with a matching text. In the WebdriverIO code, we
have the option to specify the link of an element in the below format:

$('=value of the anchor text')

Or, we can store this expression in a variable as follows:

const p = $('=value of the anchor text')

Let us identify the link highlighted in the below image and click on it:

a 134.36x 30 .icy The domain name w
. o Apps are owned by -

o - a company incorpor

'Dj Elements Console Sources Network Performance Mer

p<liz.

v<li style="backgqround-color: rgb(214, 214, 214);">
|Terms of Use

</1i>

The link highlighted in the above image has a tagname - a and the anchor text - Terms
of Use.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

44

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

// test suite name
describe('Tutorialspoint application’, function(){

//test case

it('Identify element with Link Text', function(){

// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with link text then click
$("=Terms of Use").click()
console.log('Page title after click: ' + browser.getTitle())

})s

1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js.

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas—MacBook-Air webdriverI0 % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-06T19:12:09.754Z

[0-0] RUNNING in chrome - /test/specs/testcasel.j

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: 228a1968d1fd02al1f5457116baa84df6

.4472.
.4472.
4472,
.4472.
4472,
.4472.
.4472.

» /test/specs/testcasel.js
Tutorialspoint application
Identify element with Link Text

(SSRGS IS IS IS SIS
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:09

After the command has been executed successfully, the title of the page after clicking -
Terms of Use - Tutorialspoint is printed in the console.

Partial Link Text Locator

Once we navigate to a webpage, we may interact with a webelement by clicking a link to
complete our automation test case. The locator partial link text is used for an element
having the anchor tag.

45

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

We can identify an anchor element with a matching text. In the WebdriverIO code, we
have the option to specify the partial link of an element in the below format:

$('*=value of the anchor text which is matching')

Or, we can store this expression in a variable as follows:

const p = $('*=value of the anchor text which is matching')

The partial link text is similar to link text with the only difference being that it assists in
scenarios where a few characters of an anchor element are fixed and the remaining ones
are dynamic.

Let us identify the link highlighted in the below image and click on it:

The domain name w

a 134.36x30 joy _
Apps are owned by
o lerms of Use a company incorpor
ﬂ Elements Console Sources Network Performance Mer
» .</11i
v<li style="background-color: rgb(214, 214, 214);
I a href="/about/about terms of use.htm">Terms of Use</a
/11

The link highlighted in the above image has a tagname - a and the anchor text - Terms
of Use.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case

it('Identify element with Partial Link Text', function(){

46

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with partial link text then click
$("*=Terms of").click()

console.log('Page title after click: + browser.getTitle())

})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-07T00:07:49.347Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js

[0-0] Page title after click: Terms of Use - Tutorialspoint

[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

Running: chrome (v91.0.4472.77) on mac 0S X
Session ID: 9a732a@be2e677e9bf8df24151083416

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

» /test/specs/testcasel.js
Tutorialspoint application
Identify element with Partial Link Text

(SSRGS RS RS RS R SRS
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:09

After the command has been executed successfully, the title of the page after clicking -
Terms of Use - Tutorialspoint is printed in the console.

47

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

16. WebdriverlO — ID Locator

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can use the id attribute for an
element for its identification. It is a very useful locator and speeds up the execution of
automation tests in comparison to all the locators.

In the WebdriverIO code, we have the option to specify the value of the id attribute of an
element in the below format:

$('=#value of id attribute')

Or, we can store this expression in a variable as follows:

const p = $('=t#tvalue of id attribute')

Let us identify the element highlighted in the below image and click on it:

48

' tutorialspoint

EIMPLYEASYLEARNING

WebdriverIO

Click to trigger a redirect

(a

Elements Console Sources Network Performanc

IDOCTYPE html>
| —[if IE 8]> <html

html cléss:“no—js” lang="en">

<!——<![endif]
» <head>..</head>
v <body>
»<div class="row">..</div>
v<div class="row">
: :before

»..</

v<div id="content" class="large-12 columns">
v<div class="example'>
<h3>Redirection</h3>
v <p>

" This is separate from directly returning a redire
without a destination page as part of the HTTP resp

The link highlighted in the above image has a tagname - a and the id attribute value -
redirect.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

49

WebdriverIO

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Identify element with Id', function(){
// launch url
browser.url('https://the-internet.herokuapp.com/redirector')
//identify element with id then click
$("#redirect").click()
//obtain page title

console.log('Page title after click: + browser.getTitle())

})s
})s

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-07T02:48:39.461Z

[0-@] RUNNING in chrome - /test/specs/testcasel.js

[0-0] Page title after click: The Internet

[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

Running: chrome (v91.0.4472.77) on mac 0S X
Session ID: 9dfbdc7ec9a@cObbff@05a0a5a5c47a4

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

.4472.
.4472.
.4472.
.4472.
.4472.
.4472.
.4472.

» /test/specs/testcasel.js
Tutorialspoint application
Identify element with Id

(SRS SIS S RS IS S
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:06

After the command has been executed successfully, the title of the page after clicking -
The Internet is printed in the console.

50

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

17. WebdriverlO — Tag Name Locator

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can use the HTML tagname for an
element for its identification. In the WebdriverIO code, we have the option to specify the
tagname of an element in the below format:

$('<element tagname>')

Or, we can store this expression in a variable as follows:

const p = $('element tagname')

Let us identify the element highlighted in the below image and obtain its text:
T ——

Sompany About Careers at Tutorials Point

Elements

class="m
Llv class > il
About C s at Tutorials Point

The element highlighted in the above image has a tagname - h1l.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with Nodel]S.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){

//test case

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

51

WebdriverIO

it('Identify element with Tagname', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with tagname then obtain text
console.log($("<h1>").getText() + " - is the text.")
1)
})s

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-07T03:05:06.698Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] About Careers at Tutorials Point - is the text
[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: 20e85934197ecdb8f7f9chf898105b45

» /test/specs/testcasel.js
Tutorialspoint application
Identify element with Tagname

(SRS RIS IS IS IS
X X X X X X X X

After the command has been executed successfully, the text of the element - About
Careers at Tutorials Point is printed in the console.

52

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

18. WebdriverlO — Class Name Locator

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can use the class name attribute for
an element for its identification. It is a very useful locator and speeds up the execution
of automation tests in comparison to xpath.

In the WebdriverIO code, we have the option to specify the value of the class name
attribute of an element in the below format:

$('=.value of class attribute')

Or, we can store this expression in a variable as follows:

const p = $('=.value of class attribute')

Let us identify the text highlighted in the below image and obtain its text:

y

li.heading 310.39x54

About Tutorialspoint

K Elements Console Sources Network Perforr

» <div class="mini-logo">..</div>
v<ul class="toc chapters">

A
—
=-
0
—
Q
n
n
I
=3
0]
o))
o
==
=
(o]
V
=
o
o
=
+
=1
=
+
o
=
=-
o)}
—
wn
o
o
=-
=
—+
A
~
—~
==
M
1

The element highlighted in the above image has the class attribute value as heading.

The Code Implementation is as follows:

// test suite name
describe('Tutorialspoint application', function(){

//test case

it('Identify element with Class Name', function(){

53

' tutorialspoint

EIMPLYEASYLEARNING

WebdriverIO

// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with Class Name then obtain text
console.log($(".heading").getText() + " - is the text.")
1)
1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation. The following
screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-07T18:59:15.272Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js

[0-0] About Tutorialspoint - is the text.

[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

Running: chrome (v91.0.4472.77) on mac 0S X
Session ID: cc813b1601c56a29b8502e39a8c¢71129

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

» /test/specs/testcasel.js
Tutorialspoint application
Identify element with Class Name

(SIS IS IS RS RS S
X X X X X X X X

After the command has been executed successfully, the text of the element - About
Tutorialspoint is printed in the console.

54

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

19. WebdriverlO — Name Locator

Once we navigate to a webpage, we have to interact with the webelements available on
the page like clicking a link/button, entering text within an edit box, and so on to
complete our automation test case.

For this, our first job is to identify the element. We can use the name attribute for an
element for its identification. This locator is deprecated now and is only compatible with
old browsers that are based on JSONWireProtocol or Appium.

In the WebdriverIO code, we have the option to specify the value of the name attribute
of an element in the below format:

$('[name attribute='"'value'']")

Or, we can store this expression in a variable as follows:

const p = $('[name attribute=''value'']")

Let us identify the edit box highlighted in the below image and enter text:

ing the best resource for Online Education
input#gsc-i-id1.gsc-input 663 x 34

enHANCED BY Google

& Library [X Videos Courses [eBooks GATE Exams

Sources Network Performance Memory Application Security Lighthouse

tbody>
r<tr>
v<td id="gs_tti50" class=""gsib_a">
<input autocomplete="off" type="text" size="10" class="gsc-input" name="search” title="search" id="gsc-i-id1" dir="1t
r' spellcheck="false" style="width: 100%; padding: @px; border: none; margin: -0.0625em @px Opx; height: 1.25em; back
ground: url("https://www.google.com/cse/static/images/1x/en/branding.png") left center no-repeat rgb(255, 255, 255);
outline: none;"> == $0

The element highlighted in the above image has the name attribute value as search.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

55

EIMPLYEAGSYLEARMNINIG

w Mtutorialspoint

WebdriverIO

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Identify element with Name', function(){
// launch url
browser.url('https://www.tutorialspoint.com/index.htm")
//identify element with Name then input text

$('[name="search"]"').setValue('Selenium")

})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

56

20. WebdriverlO — Expect statement for

assertions

To use WebdriverIO as an automation testing tool, we need to have checkpoints which
will help us to conclude if our test has passed or failed. There are various assertions
available in WebdriverIO with which we can verify if the test has successfully validated a
step.

In assertion, we can compare an expected result of a test with an actual. If both are
similar, a test should pass, else it should fail. The expect statement in WebdriverIO can
be applied on the browser, a mock object, or an element.

We have to add a NodelS library called Chai. Chai library contains the expect statement
that is used for the Assertion.

We have to add the below statement in our code to implement the Chai Assertion:

const e = require('chai').expect

Assertions applied to browsers

These assertions are listed below:

toHaveUrl

It checks whether the browser has opened a particular page.The syntax is as follows:

expect(browser).toHaveUrl('https://www.tutorialspoint.com/index.htm")

toHaveUrlIContaining
It checks whether the URL of a page has a particular value.

The syntax is as follows:

expect(browser).toHaveUrlContaining('tutorialspoint"')

toHaveUrl
It checks whether the page has a particular title.

The syntax is as follows:

expect(browser).toHaveTitle('Terms of Use - Tutorialspoint')

Assertions applied on elements

These assertions are listed below:

toBeDisplayed
It checks whether an element is displayed.

57

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

The syntax is as follows:

const e = $('#loc")

expect(e).toBeDisplayed()

toExist
It checks whether an element exists.

The syntax is as follows:

const e = $('#loc')

expect(e).toExist()

toBePresent
It checks whether an element is present.

The syntax is as follows:

const e = $('#loc")

expect(e).toBePresent()

toBeExisting

It is similar to toExist.

toBeFocussed

It checks whether an element is focused or not.

The syntax is as follows:

const e = $('#loc")

expect(e).toBeFocussed()

toHaveAttribute
It checks whether an element attribute has a particular value.

The syntax is as follows:

const e = $('#loc")

expect(e).toHaveAttribute('name', 'search')

toHaveAttr

It is similar to toExist.

toHaveAttributeContaining

It checks whether an element attribute contains a particular value.

The syntax is as follows:

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

const e = $('#loc')

expect(e).toHaveAttributeContaining('name’', 'srch')

toHaveElementClass
It checks whether an element has a particular class nhame.

The syntax is as follows:

const e = $('#loc")

expect(e).toHaveElementClass('name', { message: 'Not available!', })

toHaveElementClassContaining
It checks whether an element class name contains a particular value.

The syntax is as follows:

const e = $('#loc")

expect(e).toHaveElementClassContaining('nam")

toHaveElementProperty
It checks whether an element has a particular property.

The syntax is as follows:

const e = $('#loc")
expect(e).toHaveElementProperty('width', 15)
//verify negative scenario

expect(e).not.toHaveElementProperty('width', 20)

toHaveValue
It checks whether an input element has a particular value.

The syntax is as follows:

const e = $('#loc")

expect(e).toHaveValue('Selenium', { ignoreCase: false})

toHaveValueContaining
It checks whether an input element contains a particular value

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveValueContaining('srch')

toBeClickable

It checks whether an element is clickable.

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

The syntax is as follows:

WebdriverIO

const e = $('#loc")
expect(e).toBeClickable()

toBeDisabled
It checks whether an element is disabled.

The syntax is as follows:

const e = $('#loc")
expect(e).toBeDisabled()
//verify negative scenario

expect(e).not.toBeEnabled()

toBeEnabled
It checks whether an element is enabled.

The syntax is as follows:

const e = $('#loc")

expect(e).toBeEnabled()

toBeSelected

It is the same as toBeEnabled.

toBeChecked

It is the same as toBeEnabled.

toHaveHref

It checks whether a link element has a particular link target.

The syntax is as follows:

const e = $('<a>")

expect(e).toHaveHref('https://www.tutorialspoint.com/index.htm")

toHavelLink

It is same as toHaveHref.

toHaveHrefContaining

It checks whether a link element contains a particular link target.

The syntax is as follows:

const e = $('<a>")

expect(e).toHaveHrefContaining('tutorialspoint.com"')

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

60

WebdriverIO

toHaveLinkContaining

It is the same as HaveHrefContaining.

toHaveld

It checks whether an element has a particular id attribute value.

The syntax is as follows:

const e = $('#loc')

expect(e).toHaveId('loc")

toHaveText
It checks whether an element has a particular text.

The syntax is as follows:

const e = $('#loc")

expect(e).toHaveText('Learning WebdriverIO')

toHaveTextContaining
It checks whether an element contains a particular text.

The syntax is as follows:

const e = $('#loc")

expect(e).toHaveTextContaining('Learning WebdriverIO')

toBeDisplayedInViewpoint
It checks whether an element is within the viewpoint.

The syntax is as follows:

const e = $('#loc')

expect(e).toBeDisplayedInViewpoint()

Assertions applied to mock objects

The assertions are listed below:

toBeRequested
It checks whether a mock was called.

The syntax is as follows:

const m = browser.mock('**/api/list*")

expect(m).toBeRequested()

toBeRequestedTimes

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

61

WebdriverIO

It checks whether a mock was called for an expected number of times.

The syntax is as follows:

const m = browser.mock('**/api/list*")

expect(m).toBeRequestedTimes(2)

To begin, follow the steps 1 to 5 from the Chapter titled Happy path flow with
webdriverIO which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Assertion with expect', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with link text then click
$("=Terms of Use").click()
browser.pause(1000)
//verify page title with assertion

expect(browser).toHaveTitleContaining('Terms of Use - Tuter')

})s

})s

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

EIMPLYEAGSYLEARMNINIG

@- tutorialspoint

WebdriverIO

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-08T03:34:00.956Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] in "Tutorialspoint application Assertion with expect"

in chrome - /test/specs/testcasel.js
"spec" Reporter:

[chrome 91.0.4472.
[chrome 91.0.4472.
[chrome 91.0.4472.
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: 6fc2c9be945e441a08b913c418214806

» /test/specs/testcasel.js

Tutorialspoint application
Assertion with expect

1) Tutorialspoint application Assertion with expect

X X X X X X X X X X X

[chrome
[chrome
[chrome
[chrome
[chrome

Spec Files: , , 1 total (100% completed) in 00:00:20

After the command has been executed successfully, we find the result as 1 failed. Since
the Expected: is Terms of Use - Tuter and the Received: output is Terms of Use -
Tutorialspoint.

Also, the WebdriverIO expect statement has highlighted the part of the text where the
Expected: and the Received: texts are not matching.

63

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

21. WebdriverlO — Happy path flow

Let us create a simple happy flow to demonstrate how to create a basic WebdriverIO
test:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it("Happy Flow', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify element with link text then click
$("=Team").click()
//verify URL of next page with assertion
expect(browser).toHaveUrlContaining('team")
})s
1)

Step 7: Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

64

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

base) debomitabhattacharjee@ebomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-08T04:09:52.960Z

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: 3f581b5f012df7e2cbaf604b9fb34605

» /test/specs/testcasel.js
Tutorialspoint application
Happy Flow

(SRS IS IS IS RS IS S
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:09

Step 8: On investigating further on the output, we shall see the test within the spec file
testcasel.js is marked as PASSED.

The browser version and operating system on which the test has been executed, session
id, name of the spec file, test suite name - Tutorialspoint Application, test case name -
Happy Flow, duration of test execution, and so on, have also been captured in the
console.

65

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

22. WebdriverlO — General Browser Commands

Some of the general browser commands used in WebdriverIO are listed below:

browser.url(URL)

This command is used to launch an application whose URL is passed as a parameter.

The syntax is as follows:

browser.url('https://the-internet.herokuapp.com/redirector")

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with webdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Identify element with Id', function(){
// launch url
browser.url('https://the-internet.herokuapp.com/redirector")
//identify element with id then click
$("#redirect").click()
//obtain page title
console.log('Page title after click: ' + browser.getTitle())

})s

})s

browser.getTitle()

66

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

This command is used to get the title of a page presently launched in the browser. The
value is returned in the form of a string. This command does not accept any parameters.
If the page has no title, a null string is returned.

The syntax is as follows:

browser.getTitle()

To begin, follow Steps 1 to 5 from the Chapter titledHappy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint Application', function () {
// test case name
it('Get Page Title', function (){
// URL launching
browser.url("https://www.tutorialspoint.com/about/about_careers.htm")
//print page title in console

console.log(browser.getTitle())

})s
})s

browser.getUrl()

This command is used to get the URL of a page presently launched in the browser. The
value is returned in the form of a string. This command does not accept any parameters.

The syntax is as follows:

browser.getUrl()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

EIMPLYEAGSYLEARMNINIG

@- tutorialspoint

WebdriverIO

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint Application', function () {
// test case name
it('Get Url', function (){
// URL launching
browser.url("https://www.tutorialspoint.com/index.htm")
//print URL in console
console.log(browser.getUrl())
1
})s

browser.getPageSource()

This command is used to get the page source of a page presently launched in the
browser. The value is returned in the form of a string. This command does not accept
any parameters.

The syntax is as follows:

browser.getPageSource()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

EIMPLYEAGSYLEARMNINIG

@- tutorialspoint

68

WebdriverIO

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint Application’, function () {
// test case name
it('Get Page Source', function (){
// URL launching
browser.url("https://www.tutorialspoint.com/index.htm")
//print URL in console
console.log(browser.getPageSource())
})s
1)

browser.maximizeWindow()
This command is used to maximise the present browser window.

The syntax is as follows:

browser.maximizeWindow()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint Application', function () {
// test case name

it('Maximise Browser', function (){

// URL launching

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

69

WebdriverIO

browser.url("https://www.tutorialspoint.com/questions/index.php")
//maximize browser
browser.maximizeWindow()
})s
1)

tutorialspoint

EIMPLYEAEYLEARHNINTIG

&

70

23. WebdriverlO — Handling Browser Size

While working on automation tests in WebdriverIO, we may be required to set the size of
the window and obtain the size of the window. The window size refers to the window
height and width.

browser.setWindowSize(250, 450)

This command is used to set the window size. Here, the window size shall be set to width
- 250 and height - 450.

The syntax is as follows:

browser.setWindowSize (250, 450)

browser.getWindowsSize()
This command is used to get the window dimension.

The syntax is as follows:

browser.getWindowSize()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Dimension', function(){
// launch url
browser.url('https://www.tutorialspoint.com/index.htm")

//set window size

71

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

browser.setWindowSize (500, 450)
//get window size
console.log(browser.getWindowSize())
})s
1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-08T22:57:59.605Z

: 500, height: 450 }
[0-0] PASSED in chrome - /test/specs/testcasel.js

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
.4472. Session ID: f08902ed0a%907719377d5fbead716f18
.4472.
.4472.
.4472.
.4472.
.4472.

.4472.

» /test/specs/testcasel.js
Tutorialspoint application
Dimension

(SIS RS IS IS RS IS TS
X X X X X X X X

After the command has been executed successfully, the dimension of the browser
window- {width: 500, height: 4507} is printed in the console.

72

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

24. WebdriverlO — Browser Navigation

Commands

Some of the browser navigation commands used in WebdriverIO are listed below:
browser.navigateTo(URL)

This command is used to navigate to an application whose URL is passed as a
parameter.

The syntax is as follows:

browser.navigateTo('https://the-internet.herokuapp.com/redirector")

browser.back()
This command is used to navigate back in browser history.

The syntax is as follows:

browser.back()

browser.forward()
This command is used to navigate forward in browser history.

The syntax is as follows:

browser.forward()

browser.refresh()
This command is used to refresh the present webpage.

The syntax is as follows:

browser.refresh()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

73

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Navigation', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
// navigate to another url
browser.navigateTo("https://www.tutorialspoint.com/codingground.htm™)
//navigate back in history
browser.back()
//get title back in browser history

console.log('Back in Browser history: + browser.getTitle())
//navigate forward in history

browser.forward()
//get title forward in browser history

console.log('Forward in Browser history: ' + browser.getTitle())
//refresh browser

browser.refresh()
//get title after refresh

console.log('Page Title after refresh: ' + browser.getTitle())

})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

74

WebdriverIO

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-09T03:25:42.9327

RUNNING in chrome - /test/specs/testcasel.js

Back in Browser history: About Careers at Tutorials Point - Tutorialspoint
Forward in Browser history: Free Online IDE and Terminal

Page Title after refresh: Free Online IDE and Terminal

PASSED in chrome - /test/specs/testcasel.js

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: bac7437532e7136b828097e52ebbc@2a

» /test/specs/testcasel.js
Tutorialspoint application
Navigation

XXX X X X X X

Spec Files: , 1 total (100% completed) in 00:00:10

After the command has been executed successfully, the page title obtained on navigating
back in browser history - About Careers at Tutorials Point - Tutorialspoint is printed.

Then, the page title obtained on navigating forward in browser history - Free Online IDE
and Terminal is printed.

Finally, the page title obtained after page refresh - Free Online IDE and Terminal is
printed.

75

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

25. WebdriverlO — Handling Checkboxes and
Dropdowns

We can handle checkboxes in the UI while automating a test using WebdriverIO. The
checkboxes are identified in the html code with the tagname as input and type as
checkbox.

The following screen will appear on your computer:

G ROXES

input 13x13
[l checkbox 1

checkbox 2

Elements Console Sources Network Performance

CTYPE html>

L class="no-js" lang="en">
pad>..</head>

div class="row">..</div>
div class="row'">
: :before
..
<div id="content" class="large-12 columns">
<div class="example'>
<h3>Checkboxes</h3>
<form 1id="checkboxes">
<input type="checkbox">
" checkbox 1"

<input type="checkbox" checked>
" checkbox 2 "
</form>

WebdriverIO

Methods to work with Checkboxes

Some methods to work with checkboxes are as follows:
click()
It is used to check a checkbox.

The syntax is as follows:

let p = $('#loc")
p.click()

isSelected()

It is used to check if an element of type checkbox is selected or not. It returns a Boolean
value (true if checked, false if not).

The syntax is as follows:

let p = $('#loc")
p.isSelected()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Checkbox"', function(){
// launch url
browser.url('https://the-internet.herokuapp.com/checkboxes')
//identify checkbox with CSS then click
const p = $("input[type="'checkbox']")
p.click()

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

77

WebdriverIO

//verify if checked with assertion
expect(p).toBeSelected()
//uncheck checkbox
p.click()
//verify if not checked with assertion
expect(p).not.toBeSelected()
})s
1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@debomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-09T03:59:12.410Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: 2f378923bbe3d9a95860a855c9e9d2db

.4472.
.4472.
.4472.
.4472.
.4472.
.4472.
.4472.

» /test/specs/testcasel.js
Tutorialspoint application
Checkbox

(SIS IS IS IS IS TS IS
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:05

After the command has been executed successfully, all the Assertions are executed as
per expectation and we have received a passed test.

Handling Dropdowns

We can handle drop downs in the UI while automating a test using WebdriverIO. The
static drop downs are identified in the html code with the tagname as select and its
options have the tagname as option.

The following screen will appear on your computer:

78

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

_ e
°= _-select

4, TUTOR CONNECT | [scpr e ool f

CONNECTING TUTORS AND STUDENTS

Console Sources Network Performance Memory Application Security Lighthouse

<input type="text" id="txtSearchText" value name="txtSearchText" class="search-control srh-wdg-input" placeholder="Seal
s>
|5‘ select name="sellype” class= search-control search-select > == $¢

option value="subject">By Subject</option>
<option value="name">By Name</option
/select>

Methods for Static Dropdowns

Some methods to work with static dropdowns are as follows:
selectByVisibleText

This method is used to select an option which matches with the visible text of an option
passed as a parameter to this method.

The syntax is as follows:

let p = $('#loc')
p.selectByVisibleText('By Subject')

selectByAttribute

This method is used to select an option which matches with the value of any attribute
passed as a parameter to this method.

The syntax is as follows:

let p = $('#loc')

p.selectByAttribute('value', 'subject')

Here, the option has the attribute with value as subject.
selectByIndex

This method is used to select an option which matches with the index/position of an
option passed as a parameter to this method. The index starts with 0.

The syntax is as follows:

let p = $('#loc')
p.selectByIndex(1)

getValue()
This method is used to get the attribute value of an option selected in the dropdown.

The syntax is as follows:

let p = $('#loc')

79

tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

p.getValue()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Drodowns', function(){
// launch url
browser.url('https://www.tutorialspoint.com/tutor_connect/index.php")
//identify dropdown
const p = $("select[name="selType']")
//select by index
p.selectByIndex(1)
//get option selected
console.log(p.getValue() + ' - option selected by index')
//select by visible text
p.selectByVisibleText('By Subject')
//get option selected

console.log(p.getValue() + - option selected by visible text')
//select by value attribute
p.selectByAttribute('value', 'name')
//get option selected
console.log(p.getValue() + ' - option selected by attribute value')
})s

1)

Run the Configuration file - wdio.conf.js file with the following command:

EIMPLYEAGSYLEARMNINIG

@- tutorialspoint

80

WebdriverIO

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-09T719:14:09.1097

RUNNING in chrome - /test/specs/testcasel.js
name — option selected by index

subject - option selected by visible text
name — option selected by attribute value
PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

X #0-0] Running: chrome (v91.0.4472.77) on mac 0s X
X #0-0] Session ID: e5df4d75b46310a452572e9aladcl22c
X #0-01]

X #0-0] » /test/specs/testcasel.js

X #0-0] Tutorialspoint application

X #0-0] Drodowns

X #0-01]

X #0-01]

D000 ®

Spec Files: , 1 total (100% completed) in 00:00:07

After the command has been executed successfully, first the value of the option selected
with the option index - name is printed in the console.

Then, the value of the option selected with the option visible text - subject is printed in
the console.

Finally, the value of the option selected with the option attribute value - name is printed
in the console.

81

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

26. WebdriverlO — Mouse Operations

WebdriverIO can perform operations like hovering a mouse on an element by using the
moveTo method. This method shall move the mouse to the middle of the element.

The syntax is as follows:

let p = $('#loc')

p.moveTo()

In the below image, on hovering over the Mouse Hover button, the Top and Reload
buttons get displayed.

Mouse Hover

U

Top

Reload

On moving the mouse out of the Mouse Hover button, the Top and Reload buttons get
hidden.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){

//test case

82

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

it('Mouse Operatio', function(){
// launch url
browser.url('https://courses.letskodeit.com/practice’)
//identify element then hover mouse
const e = $(".dropbtn")
//scroll to element then mouse hover
e.scrollIntoView()
e.moveTo()
browser.pause(2000)
//verify if sub-element display on hovering
console.log($('=Top').isDisplayed())

})s

})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-12T03:09:53.386Z
[0-0] RUNNING in chrome - /test/specs/testcasel.js

[0-0] true

[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: c00949c8dclb7a987d2e18c39536a738

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

» /test/specs/testcasel.js
Tutorialspoint application
v Mouse Operatio

(ISR IS RS TS RS
X X X X X X X X

1 passing (5.3s)

Spec Files: 1 passed, 1 total (100% completed) in 00:00:08
After the command has been executed successfully, the boolean value is printed in the

console. This is returned by the isDisplayed() function which returns true if an element is
displayed on the page.

83

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

27. WebdriverlO — Handling Child Windows/Pop

ups

A new child window can open on clicking a link or a button. WebdriverIO by default has
control over the main browser window, in order to access the elements on the child
window, the WebdriverIO control has to be switched from the main page to the child
window.

Methods for Child Windows

Some of the methods to work with child windows are as follows:
browser.getWindowHandles()

This method yields the window handle ids of all the currently opened browser windows in
the form of a list. If there are two opened windows, the zero index of the list has the
handle id of the parent window and the first index shall point to the window handle of
the child.

The syntax is as follows:

var x = browser.getWindowHandles()

browser.getWindowHandle()
This method yields the window handle id of the browser which is in focus.

The syntax is as follows:

let 1 = browser.getWindowHandle()

browser.switchToWindow('<window handle id>")

This method is used to switch focus from one browser window to another opened window
whose window handle id is passed as a parameter to this method.

The syntax is as follows:

browser.switchToWindow(x)

In the below image, on clicking the Sign in with Apple button, a child window opens
having the browser title as Sign in with Apple ID. Let us try to switch to the child window
and access elements there.

84

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

Sign in with Apple ID

@ appleid.apple.com

Sign In
Apple ID
Email Address
‘ /®
Password '
’ Use your Apple ID to sign in to Indeed Jobs
Keep me signed in on this device. Apple ID
m Forgot Apple ID-or password? %
or
[N
In setting up Sign in with Apple, information about your
CG Sign in with Google interactions with Apple and this device may be used by
Apple to help prevent fraud. See how your data is
managed...
A

(' Sign in with Apple

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Child Window', function(){
// launch url
browser.url('https://secure.indeed.com/account/login')

//identify element then click

tutorialspoint

EIMPLYEAEYLEARHNINTIG

&

85

WebdriverIO

$('#apple-signin-button').click()
//get all window handle ids in list
var 1 = browser.getWindowHandles()
//switch to child window
browser.switchToWindow(1[1])

//get page title of child window

console.log(browser.getTitle() + - Page title of child window')
//close child window

browser.closeWindow()

//switch to parent window

browser.switchToWindow(1[@])

//get page title of parent window

console.log(browser.getTitle() + - Page title of parent window')

})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-10T03:26:16.566Z

0-0] RUNNING in chrome - /test/specs/testcasel.js

0-0]1 Sign in with Apple ID - Page title of child window

0-0] Sign In | Indeed Accounts - Page title of parent window
@-@] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

#0-0] Running: chrome (v91.0.4472.77) on mac 0s X
#0-0] Session ID: ©198f27d2200da68a69295edc51b6762
#0-0]

#0-0] » /test/specs/testcasel.js

#0-0] Tutorialspoint application

#0-01] Drodowns

#0-0]

#0-01]

S0

Spec Files: , 1 total (100% completed) in 00:00:11

After the command has been executed successfully, first the page title of the child
window - Sign in with Apple ID gets printed in the console. Then, the page title of the
parent window - Sign In | Indeed Accounts get printed in the console.

86

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

28. WebdriverlO — Hidden Elements

WebdriverIO can handle hidden elements. There are occasions when submenus get
displayed only on hovering over the main menu. These submenus are initially hidden
with the CSS property - display:none.

In the below image, on hovering over the Sign in menu, the Sign in button gets
displayed.

Hello, Sign in
Accountﬁ Lists

‘ Sign in ‘

Y PP, I T WP N T

On moving the mouse out of the Sign in menu, the Sign in button gets hidden.

Hello, Signin
Account & Lists

mes Amazon Home Pharmacy Support

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){
//test case
it('Invisible Element', function(){

// launch url

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

87

WebdriverIO

browser.url('https://www.amazon.com/")
//identify element then hover mouse
const e = $("#nav-link-accountList")
e.moveTo()
browser.pause(2000)
//click on hidden element
$('=Sign in").click()
//get page title
console.log(browser.getTitle() + ' - Page title after click')
})s
1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas—-MacBook-Air webdriverIO % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-12T03:18:24.802Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] Amazon Sign-In - Page title after click
[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: 421213bb2e2bda830cdb5534447h68e3

» /test/specs/testcasel.js
Tutorialspoint application
v Invisible Element

(SRS RS IS RS S
X X X X X X X X

1 passing (15.5s)

Spec Files: 1 passed, 1 total (100% completed) in 00:00:18

After the command has been executed successfully, the page title obtained by clicking
the hidden Sign in button - Amazon Sign-In gets printed in the console.

88

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

29. WebdriverlO — Frames

The frames in an html code are represented by the frames/iframe tag. WebdriverIO can
handle frames by switching from the main page to the frame.

Methods for Frames

Some methods to work with frames are as follows:
browser.switchToFrame('<frame id/index/locator>")

This method is used to switch focus from the main page to a frame. The frame id, index
or locator is passed as a parameter to this method.

The syntax is as follows:

browser.switchToWindow(x)

To switch the focus from the frame to the main page, we have to pass null as a
parameter to the browser.switchToFrame method.

Let us see the html code of an element inside a frame and obtain the text - BOTTOM
inside it.

[w ﬂ Elements Console Sources Network Performance Memo
<html>
<head></head>

v<frameset frameborder="1" rows="50%,50%">
»<frame src="/frame top" scrolling="no" name="frame-top'>..</frame>

v<frame src="/frame bottom" scrolling="no" name="frame-bottom">
v#document
v<html>

<head></head>
<body>BOTTOM
</body> == $0

</html>

</frame>

The tagname highlighted in the above image is frame and the value of its name attribute
is frame-bottom.

89

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Frames', function(){
// launch url
browser.url('https://the-internet.herokuapp.com/nested_frames')
//switch to frame
browser.switchToFrame($("frame[name="'frame-bottom']"))
//identify element with tagname
const p = $('<body>")
//get text inside frame
console.log(p.getText() + ' - Text inside frame')
//switch to main page
browser.switchToFrame(null)
})s
1)

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation

The following screen will appear on your computer:

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

(base) debomitabhattacharjee@Debomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-10T04:19:56.611Z

[0-@] RUNNING in chrome - /test/specs/testcasel.js
[0-0] BOTTOM - Text inside frame
[0-@] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0S X
Session ID: f495a3bf72622fc0e79b49d4876d48d2

» /test/specs/testcasel.js
Tutorialspoint application
Frames

(SIS IS RS RS S IS
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:04

After the command has been executed successfully, the text inside the frame - BOTTOM
gets printed in the console.

91

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

30. WebdriverlO — Drag and Drop

WebdriverIO can perform mouse operations like drag and drop using the dragAndDrop
method. With this, we execute clicking and holding events on the present object
(source), then pass the object to the target element. Finally, release the mouse.

The syntax is as follows:

let p
let t

$('#loc')
$('#target')

p.dragAndDrop(t)

Here, p is the source locator and t is the destination locator.

Let us perform the drag and drop functionality for the below elements:

Drag me to Dropped!

my target

In the above image, the element with the name - Drag me to my target has to be
dragged and dropped on the element - Dropped!

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which is as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodeJ]S.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

92

@ tutorialspoint

EIMPLYEASYLEARNING

WebdriverIO

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Drag and Drop', function(){
// launch url
browser.url('https://jqueryui.com/droppable/")
//maximize browser
browser.maximizeWindow()
//switch to frame
browser.switchToFrame($(".demo-frame"))
//identify source element
const src = $('#draggable')
//identify target element
const trg = $('#droppable')
//drag and drop
src.dragAndDrop(trg)
1)
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

93

WebdriverIO

& C @& jqueryui.com/droppable/

Chrome is being controlled by automated test software.

LR R L A -— -rr----

Draggable
Create targets for draggable elements.
Droppable

Resizable

Selectable Dr

Drag me to

Sortable
my target

Widgets

Accordion

After execution, the element with the name - Drag me to my target has been dragged
and dropped on the element - Dropped!

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

31. WebdriverlO — Double Click

WebdriverIO can perform mouse operations like double click using the doubleClick
method. With this, we can perform double clicking on the given element on the
webpage.

The syntax is as follows:

let p = $('#loc')
p.doubleClick()

Let us perform the double click on the below element:

only-testing-blog.blogspot.com

only-testing-blog.blogspot.com says
Iltem 5
You double clicked me.. Thank You..
Iltem 6
Date:[

| [Double-Click Me To See Alert | |

Here, it is seen that on double clicking the Double-Click me To See Alert button, an alert
box gets generated.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name

describe('Tutorialspoint application', function(){
//test case
it('Double Click', function(){

95

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

// launch url

browser.url('http://only-testing-
blog.blogspot.com/2014/09/selectable.html")

//identify element then double click
$("button").doubleClick()
//get Alert Text
console.log(browser.getAlertText() + ' - Alert Text')
//accept Alert
browser.acceptAlert()
})s
1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titledWdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-11T@2:55:38.465Z
[0-0] RUNNING in chrome - /test/specs/testcasel.js

[0-0] You double clicked me.. Thank You.. - Alert Text
[0-@] PASSED in chrome - /test/specs/testcasel.js

Reporter:

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: 802f7cad4c4dee587d96b873050173e2¢c

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

» /test/specs/testcasel.js
Tutorialspoint application
Double Click

000D
KX XX X X XX

0 (A = (A= (A

After the command has been executed successfully, the Alert text is generated on
double-click - You double clicked me.. Thank You.. gets printed in the console.

96

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

32. WebdriverlO — Cookies

We can handle cookies using WebdriverIO. A cookie helps to identify a user. It is an
efficient technique to pass information from one site session to another or in between
sessions of two connected websites.

Methods for Cookies

We can add, delete and obtain a cookie with WebdriverIO using the following methods:

browser.setCookies

This is used to set a single cookie or multiple cookies for the present page. To set a
cookie for a page, we have to first launch and stay on that page.

The syntax is as follows:

browser.setCookies({cookie, cookie.name, cookie.value, cookie.path,
cookie.domain, cookie.secure, cookie.httpOnly, cookie.expiry})

Here, cookie is the cookie object or object array and can contain the following values:

e cookie.name: It is an optional parameter and refers to the cookie name.

e cookie.value: It is an optional parameter and refers to the cookie value.

e cookie.path: It is an optional parameter and refers to the cookie path. The
default value is /(if it is not added while adding a cookie).

e cookie.domain: It is an optional parameter and refers to the cookie domain. The
default value is the present browsing context’s active document’s URL domain (if
it is not added while adding a cookie).

e cookie.secure: It is an optional parameter to check if the cookie is secured. The
default value is false (if it is not added while adding a cookie).

e cookie.httpOnly: It is an optional parameter to check if the cookie is of type
HTTP. The default value is false (if it is not added while adding a cookie).

e cookie.expiry.

browser.getCookies

This is used to get a cookie from the existing page. If the cookie name is provided as a
parameter to this method, then that particular cookie shall be obtained. Else, all the
cookies from the present page shall be obtained.

The syntax is as follows:

//to get a specific cookie

browser.getCookies (['Topic'])

97

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

Or,

//to get all cookies

browser.getCookies()

browser.deleteCookies

This is used to delete a cookie from the existing page. If the cookie name is provided as
a parameter to this method, then that particular cookie shall be deleted. Else, all the
cookies from the present page shall be deleted.

The syntax is as follows:

//to delete a specific cookie

browser.deleteCookies(['Topic'])

Or,

//to delete all cookies

browser.deleteCookies()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Cookies', function(){
// launch url
browser.url('https://www.tutorialspoint.com/index.htm")
//set cookies

browser.setCookies([

{name: 'topicl', value: 'WebdriverIO'},

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

98

WebdriverIO

{name: 'topic2', value: 'Selenium'}
D)
//get a particular cookie
const t = browser.getCookies(['topicl'])
console.log(t);
//get all cookies
const a = browser.getCookies()
console.log(a);
//delete a cookie with name topic2
browser.deleteCookies (['topic2'])
d = browser.getCookies()
console.log(d)
//delete all cookies
browser.deleteCookies()
m = browser.getCookies()
console.log(m)
1)
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

(base) debomitabhattacharjee@ebomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-11T23:24:55.6467Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] I

[e-8] {

[0-0] domain: 'www.tutorialspoint.com',
[0-0] httpOnly: false,

[0-0] name: 'topicl',

[0-0] path: '/',

[0-0] secure: true,

[0-0] value: 'WebdriverIO'

[0-0]

[0-0]

[0-0]

[0-0]

[0-0] domain: 'www.tutorialspoint.com',
[0-0] httpOnly: false,

[0-0] name: 'topic2',

[0-0] path: '/',

[0-0] secure: true,

[0-0] value: 'Selenium'

[0-0]

[0-0]

[0-0] domain: 'www.tutorialspoint.com',
[0-0] httpOnly: false,

[0-0] name: 'topicl',

[0-0] path: '/',

[0-0] secure: true,

[0-0] value: 'WebdriverIO'

[0-0]

After the command has been executed successfully, first the cookie details having the
name as topicl get printed in the console. Then, both the cookie details having names as
topicl and topic2 get displayed.

The following screen will appear on your computer:

100

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

domain: 'www.tutorialspoint.com',
httpOnly: false,

name: 'topicl',

path: '/',

secure: true,

value: 'WebdriverIOQ'

domain: '.tutorialspoint.com',
expiry: 1623453960,

httpOnly: false,

name: '_gat_gtag_UA_232293 6',
path: '/',

secure: false,

value: '1'

domain: '.tutorialspoint.com',
expiry: 1623540300,

httpOnly: false,

name: '_gid',

path: '/',

secure: false,

value: 'GA1l.2.1837915299.1623453901'

domain: '.tutorialspoint.com',
expiry: 1686525900,

httpOnly: false,

name: '_ga',

paith: /',

secure: false,

value: 'GA1l.2.2126140080.1623453901'

@] PASSED in chrome - /test/specs/testcasel.js

Then, we deleted the cookie with the name topic2, so the other cookies got printed in
the console. Finally, on deleting all the cookies, an empty array is printed in the console.

@wyecia!?ﬁe? o

33. WebdriverlO — Handling Radio Buttons

We can handle radio buttons in the UI while automating a test using WebdriverIO. The
radio buttons are identified in the html code with the tagname as input and type as
radio.

The following screen will appear on your computer:

input 13x13

viow Years of Experience:[01 02 O3 O4 O5 06 O7

widath
style=
name [e i0" value="1" style="vertical-align:middle

Methods for Radio Buttons

Some methods to work with radio buttons are as follows:
click()
It is used to select a radio button.

The syntax is as follows:

const 1 = $('.rad")
1.click()

isSelected()

It is used to check if an element of type radio is selected or not. It returns a Boolean
value (true if selected, false if not).

The syntax is as follows:

const 1 = $('.rad")
1.isSelected()

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

102

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Radio Button', function(){
// launch url
browser.url
("https://www.tutorialspoint.com/selenium/selenium_automation_practice.htm")
//identify radio button with CSS then click
const p = $("input[value="1"']")
p.click()
//verify if selected
console.log(p.isSelected())
})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

Execution of 1 workers started at 2021-06-09T04:22:39.9207

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] true
[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac o0s X
Session ID: 077d95469828ba64ae91892feeb@daed

» [test/specs/testcasel.js
Tutorialspoint application
Radio Button

S0 e e
XXX X X X X X

Spec Files: , 1 total (100% completed) in 00:00:07

103

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

After the command has been executed successfully, the boolean value is printed in the
console. This is returned by the isSelected() function which returns true as the radio
button is selected in the previous step.

104

tutorialspoint

EIMPLYEAEYLEARHNINTIG

34. WebdriverlO — Chai Assertions on

webelements

Chai is an assertion library for nodes. It is mainly used in the BDD and TDD framework.
It can easily be integrated with any JavaScript testing framework. The official
documentation of Chai is available in the below link:

https://www.npmjs.com/package/chai

For installation of Chai and making its entry in the package.json file, run the following
command:

npm install --save-dev chai

The details on the package.json file are discussed in detail in the Chapter titled
Package.json.

The following screen will appear on your computer:

105

' tutorialspoint

EIMPLYEASYLEARNING

https://www.npmjs.com/package/chai

WebdriverIO

{} package.json 1 X

{} package.json > {} devDependencies

"webdriverio": "~7.7.3"

}.r

"devDependencies": {
"@wdio/cli": "~7.7.3",
"@wdio/local-runner": "~7.7.3",
"@wdio/mocha-framework": "~7.7.3",
"@wdio/spec-reporter": "~7.7.3",
"@wdio/sync": "7.7.3",

"chromedriver": "~91.0.0",
"wdio-chromedriver-service": "~7.1.0"

PROBLEMS (1 OUTPUT TERMINAL DEBUG CONSOLE

[0-0] Team @ Tutorials Point
[0—@] PASSED in chrome - /test/specs/testcasel.js

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverI0 95
npm LGN webdriverI0@1.0.9 No description
npm BB webdriverI0@1.0.9 No repository field.

npm (LN The package @wdio/sync is included as both a dev and production dependency.

+ chaie4.3.4
added 7 packages from 20 contributors and audited 445 packages in 2.128s

52 packages are looking for funding
run “npm fund® for details

found @ vulnerabilities

New version of npm available! - 7.17.0
Changelog: https://github.com/npm/cli/releases/tag/v7.17.0
Run npm install —g npm to update!

After installation we have to add the below statement to add expected style Chai in our
code.

require('chai').expect

The syntax for Chai assertion is as follows:

const ¢ = require('chai').expect

c(p.getValue()).to.equal('subject")

Let us implement a Chai assertion and verify if the option selected in the below
dropdown is as per the expected result.

106

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

_ e
°= _-select

@TUTOR CONNECT Search Tutors By Subject VE

CONNECTING TUTORS AND STUDENTS

Console Sources Network Performance Memory Application Security Lighthouse

<input type="text" id="txtSearchText" value name="txtSearchText" class='"search-control srh-wdg-input" placeholder="Seal
s>
I;‘ select name- sellype class- search-control search-select > == $0

option value="subject">By Subject</option>
option value="name">By Name</option
/select

The details on how to handle a dropdown is discussed in detail in the Chapter - Handling
Dropdowns.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

require('chai').expect
//import chai library
const ¢ = require('chai').expect
describe('Tutorialspoint application', function(){
//test case
it('Drodowns with Chai Assertion', function(){
// launch url
browser.url('https://www.tutorialspoint.com/tutor_connect/index.php")
//identify dropdown
const p = $("select[name="selType']")
//select by index
p.selectByIndex(1)
//get option selected

console.log(p.getValue() + ' - option selected by index')

//verify option selected with chai assertion

107

tutorialspoint

EIMPLYEAEYLEARHNINTIG

&

WebdriverIO

c(p.getvalue()).to.equal('name")
//select by visible text
p.selectByVisibleText('By Subject')
//get option selected

console.log(p.getValue() + - option selected by visible text')
//verify option selected with chai assertion
c(p.getvValue()).to.equal('subject")

//select by value attribute

p.selectByAttribute('value', "name')

//get option selected

console.log(p.getValue() + - option selected by attribute value')
//verify option selected with chai assertion
c(p.getvalue()).to.equal('name")

1)

})s

Run the Configuration file - wdio.conf.js file with the command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-12T23:15:04.290Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] name - option selected by index
[0-0] subject - option selected by visible text

[0-0] name - option selected by attribute value
0-0] PASSED in chrome - /test/specs/testcasel.]js
' Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: fdaldecc@da87e41864elde2eee24b85

» /test/specs/testcasel.js
Tutorialspoint application
v Drodowns with Chai Assertion

(SRS RS RS IS IS IS
X X X X X X X X

1 passing (4.2

Spec Files: 1 passed, 1 total (100% completed) in 00:00:08

After the command has been executed successfully, first the value of the option selected
with the option index - name is printed in the console. Then, the value of the option

108

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

selected with the option visible text - subject is printed in the console. Finally, the value
of the option selected with the option attribute value - name is printed in the console.

Also, we get a PASSED result, pointing to the fact that all the Chai assertions applied on
the dropdown have passed.

Let us implement another Chai assertion and verify if the alert text obtained is as per the
expected result.

the-internet.herokuapp.com/javascript_alert

the-internet.herokuapp.com says

Javascript Aler'ts | am a JS Alert

Here are some examples of different

Click for JS Alert

The details on how to handle an alert are discussed in detail in the Chapter titled Alerts.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

//import chai library
const ¢ = require('chai').expect
// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Alerts with Chai Assertion', function(){
// launch url
browser.url('https://the-internet.herokuapp.com/javascript_alerts')
//identify element with xpath then click
$("//*[text()="Click for IS Prompt']").click()

109

tutorialspoint

EIMPLYEAEYLEARHNINTIG

WebdriverIO

//check if Alert is open

console.log(browser.isAlertOpen())

//get Alert Text
console.log(browser.getAlertText() + ' - Alert Text')
//verify Alert text with Chai assertion
c(browser.getAlertText()).to.equal("I am a IS prompt")
//accept Alert
browser.acceptAlert()
1)
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-12T23:27:57.875Z

[0-@] RUNNING in chrome - /test/specs/testcasel.js
[0-0] true

[0-0] PASSED in chrome - /test/specs/testcasel.js

.4472.
.4472.
.4472.
.4472.
.4472.
.4472.
.4472.
.4472.

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

#0-01 Running: chrome (v91.0.4472.77) on mac 0s X
#0-0] Session ID: 3ea9df9720fdb6led4f6d7989f964d5b
#0-0]

#0-0] » /test/specs/testcasel.js

#0-0] Tutorialspoint application

#0-01 v Alerts with Chai Assertion

#0-0]

#0-0] 1 passing (1.6s)

(SIS IS IS IS IS IS S
X X X X X X X X

Spec Files: 1 passed, 1 total (100% completed) in 00:00:04

After the command has been executed successfully, at first true is printed in the console
as it is returned by the browser.isAlertOpen() method. Then, the Alert text - I am a]S
prompt is printed in the console.

Also, we get a PASSED result, pointing to the fact that the Chai assertion applied on the
alert text has passed.

110

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

35. WebdriverlO — Multiple Windows/Tabs

Multiple windows/tabs can open on clicking a link or a button. WebdriverIO by default
has control over the main browser, in order to access the elements on the other tabs,
the WebdriverIO control has to be switched from the main browser window to the
opened tab.

Methods for Multiple Windows

Some methods to work with multiple windows or tabs are as follows:

browser.getWindowHandles()

This method yields the window handle ids of all the currently opened browser windows in
the form of a list. If there are two opened windows, the zero index of the list has the
handle id of the parent window and the first index shall point to the window handle of
the tab.

The syntax is as follows:

var x = browser.getWindowHandles()

browser.getWindowHandle()
This method yields the window handle id of the browser which is in focus.

The syntax is as follows:

let 1 = browser.getWindowHandle()

browser.switchToWindow('window handle id')

This method is used to switch focus from the browser window in focus to another opened
browser window whose window handle id is passed as a parameter to this method.

The syntax is as follows:

browser.switchToWindow(x)

In the below image, on clicking the Click Here link, a new tab opens having the browser
title as New Window. Let us switch to the new tab and access elements in there.

111

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

The Internet X New Window

@ the-internet.herokuapp.com

Opening a new window

Click Here

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which is as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Tab windows', function(){
// launch url
browser.url('https://the-internet.herokuapp.com/windows")
//identify element then click
$('=Click Here').click()
//get all window handle ids in list
let w = browser.getWindowHandles()
//switch to tab
browser.switchToWindow(w[1])
//get page title of tab
console.log(browser.getTitle() + ' - Page title of tab')

112

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

WebdriverIO

//close child window
browser.closeWindow()
//switch to parent window
browser.switchToWindow(w[@])
//get page title of parent

console.log(browser.getTitle() + - Page title of parent window')

})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-10T03:45:27.701Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] New Window — Page title of tab

[0-0] The Internet - Page title of parent window
[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0S X
Session ID: 374dc0@c5e6469aa89alffff0a96722af

» /test/specs/testcasel.js
Tutorialspoint application
Tab windows

(SIS IS S B IS RS S
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:06
After the command has been executed successfully, the page title of the tab window -

New Window gets printed in the console. Then, the page title of the parent window - The
Internet gets printed in the console.

113

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

36. WebdriverlO — Scrolling Operations

We can perform scrolling operations with the WebdriverIO by using the scrollIntoView
method. This method does not accept any parameter and can be applied to the browser
object or on a particular element.

The syntax is as follows:

const p = $('#loc")
p.scrollIntoView()

Or,

browser.scrollIntoView()

In the below image, let us scroll to the footer element link - Helping and click on it.

e Enter email Tor newsiener

f G+ y in u a 73.95x1¢

Elements

Styles

element.style {

}

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO.

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with Nodel]S.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Scroll’, function(){
// launch url

browser.url('https://www.tutorialspoint.com/index.htm")

114

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

//identify element
const e = $("=Helping")
//scroll to element
e.scrollIntoView()
e.click()
//get page title
console.log(browser.getTitle() + ' - Page time after click')
1)
1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) debomitabhattacharjee@Debomitas—-MacBook-Air webdriverIO % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-11T03:47:43.961Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] Helping Tutorials Point - Tutorialspoint - Page time after click
[0-0] PASSED in chrome - /test/specs/testcasel.js

“"spec" Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s X
Session ID: ab7deled95fbfcf447d46fde56fd62da

» /test/specs/testcasel.js
Tutorialspoint application
Scroll

(SIS RS TS IS IS TS S
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:09
After the command has been executed successfully, the page title of the page obtained

on clicking the link after scrolling - Helping Tutorials Point - Tutorialspoint gets printed in
the console.

115

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

37. WebdriverlO — Alerts

WebdriverIO is capable of handling Alerts.

Methods for Alerts

Some methods to work with Alerts are listed below:

browser.isAlertopen()

This method is used to verify if there is an alert in the page. It returns true, if the Alert is
present, else returns false

The syntax is as follows:

browser.isAlertopen()

browser.getAlertText()
This method is used to get the text present in the Alert.

The syntax is as follows:

browser.getAlertText()

browser.acceptAlert()
This method is used to accept an Alert.

The syntax is as follows:

browser.acceptAlert()

browser.dismissAlert()
This method is used to dismiss an Alert.

The syntax is as follows:

browser.dismissAlert()

In the below image, on clicking Click for JS Alert, an Alert is displayed. Let us obtain the
text on the Alert.

116

@ tutorialspoint

EIMPLYEASYLEARNING

WebdriverIO

the-internet.herokuapp.com/javascript

the-internet.herokuapp.com says

JavaScript Alerts | am a JS Alert

Here are some examples of different

Click for JS Alert

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Alerts', function(){
// launch url
browser.url('https://the-internet.herokuapp.com/javascript_alerts')
//identify element with xpath then click
$("//*[text()="Click for IS Prompt']").click()
//check if Alert is open
console.log(browser.isAlertOpen())
//get Alert Text
console.log(browser.getAlertText() + ' - Alert Text')
//accept Alert

browser.acceptAlert()

})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

117

tutorialspoint

EIMPLYEAEYLEARHNINTIG

WebdriverIO

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:
(base) debomitabhattacharjee@Debomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-10T04:45:52.730Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] true

[0-0] I am a JS prompt - Alert Text

[0-@] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0S X
Session ID: cccdlfc75d0aeabd4ada784ff490305ba

.4472.
.4472.
.4472.
.4472.
.4472.
.4472.
.4472.

» /test/specs/testcasel.js
Tutorialspoint application
Alerts

(SRS IS IS TS IS RS
X X X X X X X X

Spec Files: , 1 total (100% completed) in 00:00:05
After the command has been executed successfully, the first true is printed in the

console as it is returned by the browser.isAlertOpen() method. Then the Alert text - I am
a JS prompt is printed in the console.

118

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

38. WebdriverlO — Debugging Code

To debug the WebdriverIO code in the Visual Studio Code editor, we have to enable the
nightly version of JavaScript Debugger. Debugging is one of the most important steps for
identifying the root cause of an error in code.

It also helps to understand the program flow.

Enable Debugging

The steps to enable debugging are listed below:

Step 1: Navigate to the link below if you are using Windows or Linux operating system:

https://marketplace.visualstudio.com/items?itemName=ms-vscode.js-debug-nightly

Step 2: Click on Install. The following screen will appear on your computer:

» marketplace.visualstudio.com/items?itemName=ms-vscode.js-debug-nightly

g VisualStudio | Marketplace

Visual Studio Code > Debuggers > JavaScript Debugger (Nightly)

JavaScript Debugger (Nightly)
Microsoft | &, 256277 installs | % % K k¥ (4) | Free

An extension for debugging Node.js programs and Chrome.

m Trouble Installing? (2

If we are using a Mac operating system, we can skip Steps 1 and 2.

Step 3: Create a folder called the .vscode within the project. Then create a file
launch.json within this folder. The following screen will appear on your computer:

119

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://marketplace.visualstudio.com/items?itemName=ms-vscode.js-debug-nightly

WebdriverIO

v WEBDRIVERIO 3 B2 0O &
Vv .vscode
{} launch.json
> hode_modules
v test/specs

JS testcasel.js

{} jsconfig.json

{} package-lock.json
{} package.json

JS wdio.conf.js

Step 4: Add the below code in the launch.json file.

{

"configurations": [

{

"name": "Webdriver IO",

"type": "node",

"request”: "launch",

"args": ["wdio.conf.js", "--spec", "${file}"],

"cwd": "${workspaceFolder}",

"autoAttachChildProcesses": true,

"program": "${workspaceRoot}/node_modules/@wdio/cli/bin/wdio.js",

"console": "integratedTerminal”,

"skipFiles": [
"${workspaceFolder}/node_modules/**/* js",
"${workspaceFolder}/lib/**/* js",
"<node_internals>/**/* js"

]

tutorialspoint

EIMPLYEAEYLEARHNINTIG

120

WebdriverIO

¥

}

Step 5: Add a breakpoint in the spec file. The following screen will appear on your
computer:

EXPLORER Js testcasel.js X {} launch.json

v WEBDRIVERIO test > specs > Js testcasel.js > ...
v .vscode
{} launch.json

describe('Tutorialspoint application',
> node_modules

v test/specs it('Happy Flow', QX!

Js testcaseljs

{} jsconfig.json browser.url('https://www.tutorialspoint.com/about/about_careers.htm')

{} package-lock json e o | ("-Teaw).click(|
) cdil K
{} package.json
Js wdio.conf.js expect(browser).toHaveUrlContaining('team")

1
};

Step 6: Go to the Run menu and select the option Start Debugging. The following screen
will appear on your computer:

Selection View Go Run Terminal Window Help

Start Debugging

@ O Run Without Debugging

@ EXPLORER

Step 7: The execution shall get triggered in Debugger mode, with an orange band at the
bottom. Debugger attached message should be reflected in the Terminal console. Also,
the execution shall halt at the breakpoint. We have to manually resume it again.

The following screen will appear on your computer:

121

tutorialspoint

EIMPLYEAEYLEARHNINTIG

WebdriverIO

I [> Webdriverlo v 8% .- Js testcaseljs X {

o

v VARIABLES test > specs > Js testcasel.js) describe('Tutorialspoint application') callback it('"Happy Flow') callback

Vv Local
>

describe('Tutorialspoint applicati
> Global

it('Hay r OH

.url('https

expect(browser).toHaveUrlContaining('te
L

v CALL STACK
Webdriver 10: ... RUNNING
PAUSED ON BREAKPOINT

<anonymous> test/spec...
TPUT TERMINAL)EBUG CONSOLE 2: Node Debug Console v -+ 0w ~ X

"/Applications/Visual Studio Code.app/Contents/Resources/app/extensions/ms-vscode. js-debug/src/bootlo
ader.bundle. js" ——inspect-publish-uid=http' 'VSCODE_INSPECTOR_OPTIONS={"inspectorIpc":"/var/folders/vv
/1yn164sx11bchyr6fxn256jw0000gn/T/node-cdp.1591-1.sock", "deferredMode" :

/usr/local/bin/node","onlyEntrypoint":false, "autoAttachMode":"always
- - ders/vv/1lyn164sx11bchyr6fxn256jw0000gn/T/node-debug-callback-0104d6a4206b0a57"}' /usr/local/bin/node .
 ORDEDECHIE S /node_modules/@wdio/cli/bin/wdio.js wdio.conf.js —-spec /Users/debomitabhattacharjee/webdriverI0/test/

v BREAKPOINTS ugger attache

[l Caught Exceptions

<anonymous>

Execution of 1 workers started at 2021-06-08T04:52:25.274Z

Uncaught Exceptions
L) 9 P in chrome - /test/specs/testcasel.js
¥ testcasel.js

® 0 A0 & Webdriver 10 (webdriverlO)

Ln9, Col12 Spaces:4 UTF-8 LF JavaScript &’

122

tutorialspoint

EIMPLYEAEYLEARHNINTIG

J

39. WebdriverlO — Capturing Screenshots

We can capture screenshots while working on automation tests developed in
WebdriverlO using the saveScreenshot method. A screenshot is generally captured if we
encounter an application error.An Assertion has failed, and so on.

The syntax for capturing screenshots is as follows:

browser.saveScreenshot("name along with path to store screenshot")

Here, the name along with the path where the screenshot is to be saved is passed as a
parameter to the method. In the WebdriverIO, we don't have the option to capture a
screenshot for a particular element.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint application', function(){
//test case
it('Screenshot', function(){
// launch url
browser.url('https://www.tutorialspoint.com/index.htm")
//identify element then enter text
const e = $("#gsc-i-id1")
e.setValue('WebdriverIO"')
//capture screenshot of page

browser.saveScreenshot("screenshot.png")

})s

123

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation. The following
screen will appear on your computer:

v WEBDRIVERIO a2 screenshot.png
v .vscode
. @ Home @ Jobs QA [ols <p Coding Ground % UPSC Notes

{} launch.json

> node_modules

v test/specs

Js testcasel.js Ispoint
{} jsconfig.json rrete il ot vt o

{} package-lock.json
You are browsing the best resource for Online Education

{} package.json

. screenshot.png WebdriverlO|

Js wdio.conf.js

& Library [Videos Courses [E eBooks GATE Exams

ENJOY PREMIUM CONTENT AT AFFORDABLE PRICE

Become Maths and Science Champion

After the command has been executed successfully, a file named screenshot.png gets
generated within the project folder. It contains the captured screenshot of the page.

124

w. tutorialspoint

EIMPLYEAGSYLEARMNINIG

40. WebdriverlO — JavaScript Executor

Inside the WebdriverlO, the JavaScript Executor is bundled and called executeScript. The
JavaScript Executor is capable of performing all the tasks on a page whenever normal
WebdriverIO methods are not working as expected.

The syntax for the Javascript executor is as follows:

browser.executeScript("JavaScript command")

Actions with Javascript Executor

Some actions performed with JavaScript Executor are as follows:

To enter a text - AB into an edit box having id as txt, use the command given below:

browser.executeScript("document.getElementById('txt"').value="AB'")

To click a link, use the command given below:

browser.executeScript("document.querySelector('.1lnk").click()")

The command given below is used for refreshing windows:

browser.executeScript("history.go(0)")

var t = js.executeScript("return
document.getElementById('bln').innerHTML").toString()

The command to scroll down a page by 350 pixels is as follows:

browser.executeScript("window.scrollBy(0,350)")

browser.executeScript("window.scrollTo(@, document.body.scrollHeight)")

The command given below is used to scroll down upto an element having class as tcl.

browser.executeScript("document.querySelector('.tcl').scrollIntoView()")

browser.executeScript("window.history.back()")

Following command is used to go forward in browser history:

browser.executeScript("window.history.forward()")

browser.executeScript("return document.title")

125

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

41. WebdriverlO — Waits

The waitUnit method in WebdriverIO is a standard method to wait for an action /element
on the page. It waits for a criterion to be met (a true value).

For example, we often wait for a text to appear on the page.

The syntax for waitUnit method is as follows:

browser.waitUntil(condition, { timeout, timeoutMsg, interval })

Here,

e condition = condition for waiting on.

e The timeout is in milliseconds. The default value is 5000 and is an optional
parameter.

e The timeoutMsg is the error message thrown when there is a timeout and it is an
optional parameter.

e The interval is the interval in between verification. The default value is 500 and it

is also an optional parameter.

In the below image, let us click on the link - Team and wait for the text - Team @
Tutorials Point to appear on the page.

ABOUT US s atatecd]
s Company About Careers at Tutorials Point

o Careers

o Team
Currently we are looking for various freelancers authors & trainers having grea

On clicking the link Team, the highlighted message is displayed on the page.

r - o v ———cy,

About Tutorialspoint

bl About Careers at Tutorials Point
o Team
o Careers Currently we are looking for various freelancers authors & trainers having great

126

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows: Step 1: Install NodelS. The details on how to perform this
installation are given in detail in the Chapter titled Getting Started with NodeJS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

// test suite name
describe('Tutorialspoint Application', function(){
//test case
it('Waits', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm")
//identify then click link - Team
const p = $('=Team")
p.click()
//wait for text
browser.waitUntil(
() => $('<h1>").getText() === 'Team @ Tutorials Point',
{
timeout: 6000,
timeoutMsg: 'expected text did not match’
}
)s
//identify required text
const m = $('<h1>")
console.log(m.getText())
1)
1)

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

127

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

The details on how to create a Configuration file are discussed in detail in the Chapter
titledWdio.conf.js file and Chapter titled Configuration File generation.The following
screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js
Execution of 1 workers started at 2021-06-12T04:53:30.014Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-0] Team @ Tutorials Point
[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0S X
Session ID: 764bf139a5bcfbfad27661b25af4f7e8

» /test/specs/testcasel.js
Tutorialspoint Application
v Waits

.0.
0.
.0.
.0.
.0.
.0.
.0.
.0.

X X X X X X X X

1 passing (6.2s)

Spec Files: 1 passed, 1 total (100% completed) in 00:00:10

After the command has been executed successfully, the text generated on clicking the
Team link - Team @ Tutorials Point gets printed in the console.

128

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

42. WebdriverlO — Running Tests in Parallel

We can run WebdriverIO tests in parallel mode. For this we have to create more than
one spec file within the test folder. The numbers of threads in which parallel tests can
run are defined by the parameters in the Configuration file - wdio.conf.js file.

The details on how to create a Configuration file are discussed in detail in the Chapter -

Wdio.conf.js file and Chapter - Configuration File generation to store WebdriverIO
settings.

Let us take a project having three spec files within the test folder. The following screen
will appear on your computer:

v WEBDR... [7 B3 O &
v wvscode
{} launch.json
> node_modules
Vv test/specs
JS testcasel.js
JS testcase2.js
JS testcase3.js

{} jsconfig.json

{} package-lock.json

{} package.json
screenshot.png

JS wdio.conf.js

To execute all these files in a parallel mode, we have to first specify
'./test/specs/**/*.js' under the specs field in the wdio.conf.js file. This means all the

@tutnmalspomt

129

WebdriverIO

spec files within the test folder would get triggered on running the command given
below:

npx wdio run wdio.conf.js.

The following screen will appear on your computer:

JS wdio.conf.js X

Js wdio.conf.js > [€] config > /2 exclude

specs: |
"./test/specs/*xk/*.]S"’
1,

After the command has been executed successfully, we shall see all the three spec files -
testcasel.js, testcase2.js and testcase3.js getting triggered for execution
simultaneously.

The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 3 workers started at 2021-06-12T05:13:16.1007Z

[0-1] RUNNING in chrome - /test/specs/testcase2.js
[0—0] RUNNING in chrome - /test/specs/testcasel.js
[0-2] RUNNING in chrome - /test/specs/testcase3.js

Also, the maxInstances field in the wdio.conf.js determines the maximum number of
threads possible to trigger the parallel execution. By default, the value is set to 10. Here,
we have three spec files, so the maxInstances = 10, holds true.

130

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

WebdriverIO

The following screen will appear on your computer:

JS wdio.conf.js X

Js wdio.conf.js > [€] config > /2 exclude

maxInstances: 10,

capabilities: [{

maxInstances: 5,

browserName: ‘chrome’,
acceptInsecureCerts: true

There is another field called capabilities within the wdio.conf.js file. Within this, we have
a parameter called the maxInstances. It determines the number of instances that can be
opened simultaneously by the Chrome browser during the parallel run.

Let us set the value 3 for the parameter maxInstances outside the capabilities field and
then set the value 2 for the field maxInstances inside the capabilities field. The value set

for maxInstances within the capabilities overrides the value set for maxInstances outside
the capabilities.

Run the following command:

131

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

WebdriverIO

npx wdio run wdio.conf.js

After the command has been executed successfully, we shall see two spec files -
testcasel.js and testcase2.js getting triggered for execution simultaneously in Chrome.
They are initially in RUNNING status.

Once the status of testcase2.js moved to PASSED, the third spec testcase3.js moved to
the status of RUNNING. The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js

Execution of 3 workers started at 2021-06-12T18:44:20.549Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js
[0-1] RUNNING in chrome - /test/specs/testcase2.js
[0-1] PASSED in chrome - /test/specs/testcase2.js
[0-2] RUNNING in chrome - /test/specs/testcase3.js
[0-0] Team @ Tutorials Point

[0-0] PASSED in chrome - /test/specs/testcasel.js
[0-2] PASSED in chrome - /test/specs/testcase3.js

132

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

43. WebdriverlO — Data Driven Testing

We can achieve data driven testing with WebdriverIO. Data driven testing is required
when we need to execute the same test case multiple times with different combinations
of data. Here, we shall see how to use an external JSON file to hold data.

In the WebdriverIO project all the test files are created within the specs folder. The
specs folder resides within the test folder. We shall create another folder, say testData
within the test folder.

The testData folder shall contain the JSON files which hold the different sets of data in
key-value pairs. Also, if we have three test files within the spec folder and we want to
have data driven testing for all these files, we need to create three JSON files.

Each of these JSON files should be used dedicatedly for each test file within the spec
folder. We shall create a JSON file, say testl.json within the testData folder.

Now, add the below data within this file:

[

{
"email":"test@gmail.com",
"password":"12"

}s

{

"email":"test12@gmail.com”,

"password":"34"

}

]

The following screen will appear on your computer:

133

@ tutorialspoint

EIMPLYEASYLEARNING

WebdriverIO

EXPLORER {} testl.json X

v WEBDRIVERIO test > testData > {} testl.json > {} 0 > [*J email

> .vscode [

> node_modules . _
"email":"test@gmail.com",

v test “password": 12"

v specs

Js testcasel.js
"email":"testl12@gmail.com",
"password":"34"

Vv testData
{} testl.json
{} jsconfig.json
{} package-lock.json

{} package.json

Js wdio.conf.js

We shall parse this JSON file and convert it in string format. This is done by adding the
below library:

const s =require('fs')

Then to parse the JSON file, we shall use the readFileSync method and pass the relative
path of the JSON file file as a parameter to this method. Finally, store this in an object,
say c. This object shall contain all the data.

let ¢ = JSON.parse(s.readFileSync('test/testData/testl.json'))

Then, we shall iterate the same test case over the two sets of data with the help of the
loop. This loop has to be implemented just before the block and it should pass the data
keys as declared in the JSON file.

With the above set of data, we shall validate the login page of the LinkedIn application.
On clicking on the Sign in button after entering an email and password of less than 6
characters, an error message - The password you provided must have at least 6
characters should be thrown.

The following screen will appear on your computer:

134

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

Linked [}

Signin

Stay updated on your professional world

Email or Phone

test123@gmail.com

Password
show

The password you provided must have at least 6
characters.

Forgot password?

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

135

tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

//import chai library
const ¢ = require('chai').expect
//library for parsing JSON file
const s =require('fs")
let h = JSON.parse(s.readFileSync('test/testData/testl.json"))
// test suite name
describe('Tutorialspoint application', function(){
//iterate the test case
h.forEach(({email,password}) =>{
//test case
it('Data Driven testing', function(){
// launch url
browser.url('https://www.linkedin.com/login")
//identify the email field then enter key - email
$("#username").setValue(email)
//identify password field then enter key - password
$("#password").setValue(password)
//identify Sign in button then click
$("button[type="submit']").click()
//verify error message
const e = $('#error-for-password')

console.log(e.getText() + ' - Error Text')
//verify Alert text with Chai assertion

c(e.getText()).to.equal("The password you provided must have at least 6
characters.™)

})s
})s
})s

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

136

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

WebdriverIO

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js

Execution of 1 workers started at 2021-06-13T04:38:07.827Z

[0-0] RUNNING in chrome - /test/specs/testcasel.js

[0-0] The password you provided must have at least 6 characters. - Error Text
[0-0] The password you provided must have at least 6 characters. - Error Text
[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

.4472.
.4472.

[chrome
[chrome
[chrome .4472.
[chrome .4472.

0 Running: chrome (v91.0.4472.77) on mac 0S X
(/]
0
.0
[chrome 91.0.
.0.
0
0
0

Session ID: 45ceal81d72bfb@61fc32825e0a535ad

» /test/specs/testcasel.js
Tutorialspoint application
v Data Driven testing
+~ Data Driven testing

X X X XIX X X X X

2 passing (5s)

Spec Files: 1 passed, 1 total (100% completed) in 00:00:08

After the command has been executed successfully, the error text - The password you
provided must have at least 6 characters gets printed in the console twice.

Also, it shows the message 2 passing as the same test case defined in one block has
executed two times with two different sets of data.

137

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

44. WebdriverlO — Running Tests from

command-line parameters

We can control running tests using the command-line parameters. Let us take a
scenario, where we have four test files within the spec folder in the WebdriverIO project.

The following screen will appear on your computer:

v WEBDR... [1 B O &
> .vscode
> node_modules
Vv test
Vv specs
JS testcasel.js
JS testcase2.js
JS testcase3.js
JS testcased.js
> testData

{} jsconfig.json

{} package-lock.json
{} package.json

JS wdio.conf.js

Suppose we want to trigger only the files testcasel.js and testcase2.js using the
command-line parameters. To do this we have to add a parameter called suites in the
Configuration file wdio.conf.js file.

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

@tutnmalspomt

138

WebdriverIO

Let us consider that the files testcasel.js and testcase2.js belong to a suite called the
groupl and the files testcase3.js and testcase4.js belong to a suite called the group2.
We need to add this information to the wdio.conf.js file under the suite parameter as
given below.

suites: {
groupl: ['test/specs/testcasel.js', 'test/specs/testcase2.js'],
group2: ['test/specs/testcase3.js', 'test/specs/testcased.js’']

}s

The following screen will appear on your computer:

Js wdio.conf.js @

Js wdio.conf.js > [€] config

suites: {

groupl: ['test/specs/testcasel.js', 'test/specs/testcase2.js'l,
group2: ['test/specs/testcase3.js', 'test/specs/testcase4.js']

h

specs: [
'./test/specs/*k/*.js'

1,

To trigger the test files testcasel.js and testcase2.js belonging to groupl, we have to
run the command given below:

npx wdio run wdio.conf.js --suite groupl

The following screen will appear on your computer:

139

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

WebdriverIO

(base) debomitabhattacharjee@ebomitas—-MacBook-Air webdriverI0 % npx wdio run wdio.conf.js -—suite groupl

Execution of 2 workers started at 2021-06-13T05:15:31.368Z

[0-1] RUNNING in chrome - /test/specs/testcase2.js
[0-0] RUNNING in chrome - /test/specs/testcasel js

[0-1] PASSED in chrome - /test/specs/testcasez js
[0-0] The password you provided must have at least 6 characters. — Error Text
[0-0] The password you provided must have at least 6 characters. — Error Text
[0-0] PASSED in chrome - /test/specs/testcasel.js

Reporter:

[chrome 91.0. - Running: chrome (v91.0.4472.77) on mac 0s X
[chrome .0.4472. Session ID: 19da714f4d04331b3202927d746dbd6a
[chrome : .

[chrome 91.0. . » /test/specs/testcase2.js

[chrome 91.0. - Tutorialspoint application

[chrome 91.0. . v Identify element with Id

[chrome

[chrome 91.0. . 1 passing (2.6s)

[chrome 91.0. : Running: chrome (v91.0.4472.77) on mac 0S X
[chrome 91.0. - Session ID: cbaa95af8d56e3a33a96950b2006c091
[chrome

[chrome 91.0. o » /test/specs/testcasel.js

[chrome 91.0. . Tutorialspoint application

[chrome 91.0. - v Data Driven testing

[chrome 91.0. . v Data Driven testing

[chrome

[chrome 91.0. : 2 passing (5.5s)

Spec Files: 2 passed, 2 total (100% completed) in 00:00:09

After the command has been executed successfully, we see only the two test files
testcasel.js and testcase2.js under the specs folder have been triggered for execution.

Suppose we want to trigger only the file testcase3.js using the command-line
parameters. To trigger only the test file testcase3.js, we have to run the following
command:

npx wdio run wdio.conf.js --spec test/specs/testcase3.js

The following screen will appear on your computer:

(base) debomitabhattacharjee@ebomitas-MacBook-Air webdriverIO % npx wdio run wdio.conf.js --spec test/specs/
testcase3. js

Execution of 1 workers started at 2021-06-13T05:20:57.653Z

[0-@] RUNNING in chrome - /test/specs/testcaseB]S

[0-0] PASSED in chrome - /test/specs/testcase3 js
' Reporter:

[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome
[chrome

Running: chrome (v91.0.4472.77) on mac 0s Xx
Session ID: ¢52378e458c76f6b42b17b7c6450e4db

» /test/specs/testcase3.js
Tutorialspoint application
v Identify element with Tagname

(SRS SRS RS RS IS RS
X X X X X X X X

1 passing (3.8s)

Spec Files: 1 passed, 1 total (100% completed) in 00:00:07

After the command has been executed successfully, we see only the test file testcase3.js
under the specs folder has been triggered for execution.

140

@ \tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

Besides, if we want to trigger multiple test files testcase3.js and testcase4.js, the
command should be as follows:

npx wdio run wdio.conf.js --spec test/specs/testcase3.js,
test/specs/testcasesd. js

Suppose we want to exclude only the file testcase4.js from execution. To do this we
have to add a relative path of the file that we want to exclude under the exclude
parameter in the Configuration file wdio.conf.js file as given below.

exclude: [
// 'path/to/excluded/files"

‘test/specs/testcased.js’

1,

The following screen will appear on your computer:

JS wdio.conf.js X

JS wdio.conf.js > [€] config
specs: [
'./test/specs/*xx/*x.]js'
1,

exclude: [

'test/specs/testcase4d.js’

1,

Then, we have to run the below command:

npx wdio run wdio.conf.js

The following screen will appear on your computer:

141

@. tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

(base) debomitabhattacharjee@Debomitas-MacBook-Air webdriverI0 % nﬁx wdio run wdio.conf.js

Execution of 3 workers started at 2021-06-13705:31:19.170Z

RUNNING in chrome - /test/specs/testcase2.js
RUNNING in chrome - /test/specs/testcasel.js
RUNNING in chrome - /test/specs/testcase3.js

PASSED in chrome - /test/specs/testcase2.js

About Careers at Tutorials Point - is the text.

PASSED in chrome - /test/specs/testcase3.js

The password you provided must have at least 6 characters. - Error Text
The password you provided must have at least 6 characters. - Error Text
PASSED in chrome - /test/specs/testcasel.js

After the command has been executed successfully, we see the test file testcase4.js
under the specs folder has been excluded from execution.

142

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

45. WebdriverlO — Execute Tests with Mocha

Options

A test file within the specs folder consists of the describe and it blocks. A describe block
refers to the test suite and the it block refers to the test case. A describe block can have
multiple blocks.

The details on how to create describe and it blocks are discussed in detail in the Chapter
titled Happy path flow with Webdriverio.

To verify if a new build obtained from the development team is a healthy one, we need
not execute all the test cases within a suite. A few test cases are identified for
smoke/sanity testing and they are executed once we have a new build.

We can use the Mocha option called Grep to group test cases and run them together. For
this, we have to add a keyword, say Smoke within the it description. Then at the
runtime, we can instruct the WebdriverIO test to only trigger the it blocks which have
Smoke in its description.

Let us take a test file having four it blocks. Out of the four it blocks, there are two it
blocks having the keyword Smoke in description.

To begin, follow Steps 1 to 5 from the Chapter titled Happy path flow with WebdriverIO
which are as follows:

Step 1: Install NodelS. The details on how to perform this installation are given in detail
in the Chapter titled Getting Started with NodelS.

Step 2: Install NPM. The details on how to perform this installation are given in detail in
the Chapter titled Installation of NPM.

Step 3: Install VS Code. The details on how to perform this installation are given in
detail in the Chapter titled VS Code Installation.

Step 4: Create the Configuration file. The details on how to perform this installation are
given in detail in the Chapter titled Configuration File generation.

Step 5: Create a spec file. The details on how to perform this installation are given in
the Chapter titled Mocha Installation.

Step 6: Add the below code within the Mocha spec file created.

//import chai library

const ¢ = require('chai').expect

//1library for parsing JSON file

const s =require('fs")

let h = JSON.parse(s.readFileSync('test/testData/testl.json"'))
// test suite name

describe('Tutorialspoint application', function(){

//iterate the test case

143

@ tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

h.forEach(({email,password}) =>{

//test case

it('Data Driven testing', function(){
// launch url
browser.url('https://www.linkedin.com/login")
//identify the email field then enter key - email
$("#username").setValue(email)
//identify password field then enter key - password
$("#password").setValue(password)
//identify SSign in button then click
$("button[type="submit']").click()
//verify error message
const e = $('#error-for-password')

console.log(e.getText() + - Error Text')
//verify Alert text with Chai assertion

c(e.getText()).to.equal("The password must be provided.")

})s

})s
// it is blocked with Smoke keyword

it('Identify element with Id - Smoke', function(){
// launch url
browser.url('https://the-internet.herokuapp.com/redirector"’)
//identify element with id then click
$("#redirect").click()
//obtain page title
console.log('Page title after click: ' + browser.getTitle())
})s
// it block with Smoke keyword
it('Identify element with Tagname - Smoke', function(){
// launch url
browser.url('https://www.tutorialspoint.com/about/about_careers.htm')
//identify element with tagname then obtain text
console.log($("<h1>").getText() + " - is the text.")
1)
//test case
it('Identify element with Class Name', function(){
// launch url

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

144

WebdriverIO

browser.url('https://www.tutorialspoint.com/about/about _careers.htm')
//identify element with Class Name then obtain text
console.log($(".heading").getText() + " - is the text.")

})s

1)

To trigger only the it blocks connected with Smoke, run the Configuration file -
wdio.conf.js file with the following command:

npx wdio run wdio.conf.js --mochaOpts.grep Smoke

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

(base) root@Debomitas-MacBook-Air webdriverIO # npx wdio run wdio.conf.js —mochaOpts.grep Smoke

Execution of 1 workers started at 2021-06-13T23:34:19.122Z

[0—-@] RUNNING in chrome - /test/specs/testcasel.j
i 5

Spec Files: 1 passed, 1 total (100% completed) in 00:00:09

After the command has been executed successfully, we find out of the four it blocks,
only two it blocks (having Smoke tag in description) have been executed.

145

EIMPLYEAGSYLEARMNINIG

w. tutorialspoint

46. WebdriverlO — Generate HTML reports from

Allure

In WebdriverIO, we have a reporter plugin to generate Allure Test Reports. An Allure is a
light-weight test reporter tool that creates a brief and well-documented report based on
the test results from an automation run.

For installation of Allure and creating it's entry in the package.json file, we have to run
the below mentioned command:

npm install @wdio/allure-reporter --save-dev

The details on package.json are discussed in the Chapter titled Package.json file.

The following screen will appear on your computer:

{} package.json 1 X

{} package.json > {} devDependencies

I

"devDependencies":
"@wdio/allure-reporter
"@wdio/local-runner
"@wdio/mocha-framework": "~7.7.3",
"@wdio/spec-reporter": "~7.7.3",
"@wdio/sync": "7.7.3",
L chalil-Ru AN Mg e
"chromedriver": "~91.0.0",
"wdio-chromedriver-service": "~7.1.0"

1 TERMINAL
(base) debomitabhattacharjee@Debomitas—-MacBook-Air webdriverI0 %

npm uuid@3.4.0: Please upgrade to version 7 or higher. O0lder versions may use Math.random()
in certain circumstances, which is known to be problematic. See https://v8.dev/blog/math-random for details

npm XY webdriverI0@l.0.9 No repository field.

npm A3 webdriverI0@1.0.0 No description
npm AN The package @wdio/sync is included as both a dev and production dependency.

+ @wdio/allure-reporter@7’.7.3
added 11 packages from 11 contributors and audited 456 packages in 3.818s

52 packages are looking for funding
run “npm fund® for details

After installation of the Allure, we have to configure the output directory in the
Configuration file wdio.conf.js within the reporter options by adding the below code.

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

reporters: [['allure', {

outputDir: 'allure-results',

146

tutorialspoint

EIMPLYEAGSYLEARMNINIG

WebdriverIO

disableWebdriverScreenshotsReporting: false,

1,

The following screen will appear on your computer:

JS wdio.conf.js X

Js wdio.conf.js > [e] config > /2 reporters

logLevel: 'silent',

reporters: [['allure', q
outputDir: 'allure-results',
disableWebdriverScreenshotsReporting:
h11,

Here, the outputDir has the default directory of /allure-results. After automation is
completed, we shall find this directory generated. It shall contain the .xml files for each
of the test files within the specs folder included in the run along with .txt, .png and other
files.

Also, to attach the screenshot of the failure test, we have set the parameter
disableWebdriverScreenshotsReporting to false.

However, we also need to add an afterStep hook in the wdio.conf.js file having the code
as shown below:

afterStep: function (test, scenario, { error, duration, passed }) {
if (error) {

browser.takeScreenshot();

}

The following screen will appear on your computer:

Js wdio.conf.js X

Js wdio.conf.js > [€] config > @ afterStep

afterStep: (test, scenario, { error, duration, passed }) {
if (error) {
browser.takeScreenshot();

¥

H

147

EIMPLYEAGSYLEARMNINIG

@. tutorialspoint

WebdriverIO

Run the Configuration file - wdio.conf.js file with the following command:

npx wdio run wdio.conf.js

The details on how to create a Configuration file are discussed in detail in the Chapter
titled Wdio.conf.js file and Chapter titled Configuration File generation.

The following screen will appear on your computer:

v WEBDR... [7 B O &
vscode
allure-results
node_modules
test

jsconfig.json

package-lock.json

package.json

wdio.conf.js

After the command has been executed successfully, a folder called allure-results(as
specified in the wdio.conf.js) gets generated within the WebdriverIO project. It contains
the reports in xml format.

Next, we have to convert these reports to the HTML format. For this, we shall first install
the Allure Commandline tool for generating Allure reports from the test results.

This is done by running the below given command:

npm install -g allure-commandline --save-dev

After the installation, we can generate the results in HTML format with the below
mentioned command:

allure generate [allure_output_dir] && allure open

To override an existing result, we have to run the following command:

allure generate [allure_output_dir] --clean && allure open

The following screen will appear on your computer:

148

tutorialspoint

EIMPLYEAEYLEARHNINTIG

WebdriverIO

(base) root@Debomitas-MacBook-Air webdriverI0 # allure generate allure-results & allure open
Report successfully generated to allure-report

Starting web server...
2021-06-13 15:25:25.756:INFO::main: Logging initialized @412ms to org.eclipse.jetty.util.log.StdErrLog
Server started at <http://192.168.0.176:49958/>. Press <Ctrl+C> to exit

After the command has been executed successfully, a browser is opened containing the
test result. The following screen will appear on your computer:

ece M S D) 192.168.0.176 J b+ ©
ED Allure Report ED Aure Report
ALLURE REPORT 6/13/2021 TREND
3 66.66%
SUITES
Tutorialspoint application E
Show all

There is nothing to show

ENVIRONMENT

There are no environment variables CAIEGORIES
Product defects — —
FEATURES BY STORIES Show all
Show all
EXECUTORS

There is no information about tests executors

On clicking the failed test(marked with red), we shall get the details of the test along
with the expected, actual output and screenshot of the failure(obtained on expanding
Response).

The following screen will appear on your computer:

£) Allure Report E) Allure Report
Suites (i g2 POST /session/:sessi 95t1-40d2-9335-
ce576bdb529c/value
: name #* - : Status: n m
Marks: @ POST /session/:sessionld/element

POST /session/:sessionld/element/b6113745-cf92-4c2b-9b90-37002389df29/clear

v Tutorialspoint application [1]
z 5 POST /session/:sessionld/element/b6113745-cf92-4c2b-9b90-
€ #1 Data Driven testing 8s 495ms 37002389df29/value

Sut #3 Identify element with Id 3s 428ms

uites T

#2 Identify element with Tagname 7s 319ms POST /session/:sessionid/element
POST /session/:sessionld/element/f87e876e-8d30-4d91-ae43-
e4cad38843b5/click

POST /session/:sessionld/element

GET /session, i 05940-fda2-4d3c-a585 4aftext
GET i i 40-fda2-4d3c-a585 Aafext

v [Response 608 X

expected 'The password you provided must have at least 6
characters.' to equal 'The password you provided must have at least
7 characters.'

149

tutorialspoint

EIMPLYEAEYLEARHNINTIG

&

